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ABSTRACT

Embodied Artificial Intelligence (AI) is an intelligent system formed by agents and their
environment through active perception, embodied cognition, and action interaction. Existing
embodied AI remains confined to human-crafted setting, in which agents are trained on given
memory and construct models for given tasks, enabling fixed embodiments to interact with relatively
static environments. This paradigm of existing embodied AI heavily relies on external human
guidance and empirical configurations. Such methods fail in in-the-wild setting characterized by
variable embodiments and dynamic open environments. This paper introduces self-evolving
embodied AI, a new paradigm in which agents operate based on their changing state and environment
with memory self-updating, task self-switching, environment self-prediction, embodiment
self-adaptation, and model self-evolution, aiming to achieve continually adaptive intelligence with
autonomous evolution. Specifically, we present the definition, framework, components, and
mechanisms of self-evolving embodied AI, systematically review state-of-the-art works for realized
components, discuss practical applications, and point out future research directions. We believe that
self-evolving embodied AI enables agents to autonomously learn and interact with environments in a
human-like manner and provide a new perspective toward general artificial intelligence.
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1. Introduction

Embodied Artificial Intelligence (AI) originates
from the Embodied Turing Test by Alan Turing
in 1950 [1], which emphasizes that intelligence
should be evaluated through an agent’s ability to
perceive and act in the physical world in addition
to abstract symbol computation. Specifically,
embodied AI refers to intelligent systems [2]
formed by agents and their environment through
active perception, embodied cognition, and ac-
tion interaction. Unlike disembodied AI that op-
erates on static data or abstract symbols, embod-
ied AI emphasizes the closed-loop coupling be-
tween perception, cognition, and action [3], en-
abling agents to interact with physical environ-
ments in a grounded manner. As such, embod-
ied AI benefits in promising potential in a wide
range of applications, including robotics [4], au-
tonomous driving [5], and other real-world inter-
active systems [6] etc.

Despite its rapid progress, existing embod-
ied AI remains confined to human-crafted set-
ting [7,8], in which agents are trained with given
memory and construct models for given tasks,

thus enabling fixed embodiments to interact with
relatively static environments [9]. The current
embodied AI learning paradigm [10] is opti-
mized for given tasks under predefined objec-
tives, and the performance relies heavily on ex-
ternal human guidance and empirical specifi-
cation [11], including human-given tasks, pre-
designed models, manually-collected datasets,
fixed-configuration embodiments, and specified
experimental environments.

However, real-world scenarios often involve
in-the-wild setting. On the one hand, in-the-wild
environments are often dynamic and open [12,
13], with continually changing objects, dynam-
ics, and interaction patterns that cannot be fully
predefined or exhaustively enumerated during
training. On the other hand, in-the-wild deploy-
ment often requires variable embodiments [14],
where agents differ in morphology, sensing, ac-
tuation, computational configurations, and phys-
ical constraints, resulting in policies and models
learned under fixed embodiments being difficult
to adapt. Unfortunately, existing embodied AI
fails in in-the-wild setting.

Motivated by neuroscience [15] and cogni-
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Figure 1. Comparison between current embodied AI and self-evolving embodied AI. (a) Current embodied AI operates based on
given task, given memory, given embodiment, and given environment to pretrain the corresponding model, which relies heavily on
external human guidance and empirical configurations. (b) Self-evolving embodied AI operates based on its changing state and
dynamic environment with memory self-updating, task self-switching, embodiment self-adaptation, environment self-prediction, and
model self-evolution, aiming to achieve continually adaptive intelligence over time t with autonomous evolution.

tive science [16], we introduce a new paradigm
of self-evolving embodied AI in this paper, as
illustrated in Figure 1. Self-evolving embod-
ied AI requires agents to operate based on their
changing state and environment with memory
self-updating, task self-switching, environment
self-prediction, embodiment self-adaptation, as
well as model self-evolution. In this paradigm,
agents can achieve continually adaptive intelli-
gence with autonomous evolution, enabling em-
bodied AI to move from human-crafted setting
to in-the-wild setting.

Specifically, we first present the definition,
framework, components, and mechanisms of
self-evolving embodied AI. We then systemati-
cally review state-of-the-art works for each self-
evolving component. Furthermore, we discuss
practical applications that demonstrate the ad-
vantages of self-evolving embodied AI in vari-
able embodiments and dynamic open environ-
ments. Finally, we summarize future research di-
rections toward building controllable, trustwor-
thy, and swarm self-evolving embodied AI. We
anticipate with full confidence that self-evolving
embodied AI is able to learn autonomously in a
human-like manner and provide a new perspec-
tive toward general artificial intelligence.

2. Self-evolving Embodied AI

This section introduces self-evolving embodied
AI, a new paradigm that aims to move em-
bodied AI beyond human-crafted setting toward
in-the-wild setting. We first provide a pre-
cise definition and unified framework that dis-
tinguishes self-evolving embodied AI from ex-
isting paradigms. We then elaborate on the core
components of self-evolving embodied AI, ex-

plaining what evolves, why it evolves, when it
evolves, and how it evolves for each component.
Finally, we discuss self-evolving mechanisms,
how to achieve continually adaptive intelligence
with autonomous evolution driven by the agent’s
own state and interaction with dynamic open en-
vironments.

2.1 The Definition and Framework

This subsection establishes the conceptual foun-
dation of self-evolving embodied AI. We provide
a precise definition of self-evolving embodied AI
and then introduce a unified framework to de-
scribe how self-evolution is organized.

Definition 1 (Self-evolving embodied AI).
The agent operates based on its own chang-
ing internal state and external environment
with memory self-updating, task self-switching,
embodiment self-adaptation, environment self-
prediction, and model self-evolution, aiming to
achieve continually adaptive intelligence with
autonomous evolution.

Framework. Figure 1(b) illustrates the frame-
work of self-evolving embodied AI. Specifically,
the agent is organized around five tightly cou-
pled modules, namely memory self-updating,
task self-switching, environment self-prediction,
embodiment self-adaptation, and model self-
evolution. These modules are not independent,
but evolve jointly through continuous interac-
tion with the environment and with each other.
Updates in one module may induce adjustments
in others. This organization is reflected by
bidirectional information exchange among mod-
ules across time. For example, changes in em-
bodiment constraints may alter the relevance of
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stored memory, which in turn affects task switch-
ing and model evolving. Together, they form a
unified evolutionary loop that supports continu-
ally adaptive intelligence under variable embod-
iments and dynamic open environments.

For comparison, Figure 1(a) summarizes the
framework of existing embodied AI. Specifi-
cally, the agent, with given memory, task, and
embodiment configuration, learns a pretrained
model for predefined objectives in a specific
experimental environment. This framework is
largely unidirectional, shown as one-way arrows
pointing toward the pretrained model.

The contrast between the two frameworks
highlights a fundamental difference in how em-
bodied AI is realized. Existing embodied AI re-
lies on given components and pretrained mod-
els with external human guidance and empir-
ical configurations, whereas self-evolving em-
bodied AI treats memory, task, environment, em-
bodiment, and model as evolving components
driven by the agent itself. Compared to exist-
ing embodied AI operating under relatively static
environments, by replacing unidirectional opti-
mization with bidirectional coupling among self-
evolving modules, self-evolving embodied AI
enables continuous adaptation with autonomous
evolutionary capability in dynamic open envi-
ronments over time.

2.2 The Components

This subsection elaborates on the core compo-
nents of self-evolving embodied AI: memory
self-updating, task self-switching, environment
self-prediction, embodiment self-adaptation, and
model self-evolution. For each component, we
explain what evolves, why evolution is neces-
sary, when evolution is triggered, and how evo-
lution is realized in details.

Memory self-updating. What evolves in memory
self-updating is the agent’s internal memory rep-
resentation. Experience is continuously gener-
ated through the agent’s interaction with the en-
vironment, while memory self-updating deter-
mines how experience is selectively retained, re-
vised, or discarded over time. Why evolution
is necessary lies in the fact that fixed memo-
ries or static datasets cannot support long-term
adaptation under environmental distribution shift
and changing embodiments or tasks. In in-the-
wild environments, storing all past experiences
is neither feasible nor desirable. When evolu-
tion is triggered, previously stored experiences
become outdated, irrelevant, or misleading with

respect to the agent’s current embodiment con-
straints, task objectives, or environmental dy-
namics. How evolution is realized is through se-
lective memory updating mechanisms, such as
memory self-editing, memory self-organization,
and memory self-distillation, which prioritize
experiences based on relevance, novelty, uncer-
tainty, or long-term utility.

Task self-switching. What evolves in task self-
switching is the agent’s internal representation
of task objectives. Rather than optimizing pre-
defined objectives of given tasks, task self-
switching improves the agent’s ability to au-
tonomously adjust what it is trying to achieve
over time. Why evolution is necessary lies in
the fact that predefined objectives of given tasks
cannot adequately capture the changing goals,
constraints, and opportunities encountered in dy-
namic open environments. In-the-wild setting
rarely present stable, well-defined goals; over
time, predefined objectives of given tasks may
limit autonomy and prevent effective adaptation.
When evolution is triggered, current task formu-
lations become infeasible, suboptimal, or mis-
aligned with the agent’s internal state, embod-
iment constraints, or environmental dynamics.
How evolution is realized is through autonomous
task self-switching mechanisms, such as task
self-selection and task self-generation, enabling
agents to continuously adjust what they aim to
achieve without explicit human re-specification.

Environment self-prediction. What evolves in en-
vironment self-prediction is the agent’s internal
representation of the external world. It captures
how agents continuously update their under-
standing of environmental dynamics and make
future predictions of the external world. Why
evolution is necessary lies in the fact that real-
world environments are non-stationary and can-
not be fully characterized by fixed or offline-
learned models. Agents need to maintain and
refine predictive representations that anticipate
future states, rewards, and interaction action se-
quences. When evolution is triggered, newly ob-
served environment states contradict prior pre-
dictions, reveal previously unseen dynamics, or
expose long-term dependencies that were not
captured before. How evolution is realized
is through continual refinement of world mod-
els based on ongoing interaction, such as un-
derstanding world models and generative world
models, allowing agents to update their internal
representation of the external world and support-
ing adaptive planning and decision-making over
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time.

Embodiment self-adaptation. What evolves in
embodiment self-adaptation is the agent’s in-
ternal representation of its own physical state.
Self-evolving embodied AI needs to adapt the
embodiment’s heterogeneous morphology, sens-
ing capabilities, actuation limits, computational
configurations, and physical constraints. Why
evolution is necessary lies in the fact that em-
bodiments may vary across platforms or change
over time due to reconfiguration, wear, dam-
age, or degradation, causing policies learned un-
der fixed embodiments to fail. When evolu-
tion is triggered, discrepancies arise between ex-
pected and actual own physical states, indicat-
ing that previous embodiment assumptions are
no longer valid. How evolution is realized is
through embodiment-aware adaptation mecha-
nisms, such as embodiment self-reconfiguration,
embodiment self-calibration, and embodiment
self-recovery, enabling agents to maintain func-
tionality across variable embodiments.

Model self-evolution. What evolves in model self-
evolution is the agent’s internal model design, in-
cluding model architectures, optimization strate-
gies, and evaluation criteria, rather than only
model parameters. Why evolution is neces-
sary lies in the fact that fixed architectures,
given training strategies, and predefined eval-
uation metrics cannot remain effective under
long-term changes in memory, tasks, environ-
ments, and embodiments. As operating condi-
tions evolve, models that were previously well-
optimized may become inefficient, misaligned,
or inadequate. When evolution is triggered, per-
sistent performance degradation, increasing un-
certainty, or systematic mismatch between eval-
uation outcomes and real-world behavior indi-
cates that existing model designs are no longer
appropriate. How evolution is realized is through
adaptive modification of model architectures,
adjustment of optimization strategies, and re-
finement of evaluation criteria, such as model
self-restructuring, model self-optimization, and
model self-evaluating, enabling the learning pro-
cess itself to evolve and remain aligned with
long-horizon autonomous operation.

2.3 Self-evolving Mechanisms

Self-evolving mechanisms describe how the five
core components evolve in a unified closed-loop.
Rather than evolving independently, there is con-
tinuous co-evolution of memory self-updating,

task self-switching, environment self-prediction,
embodiment self-adaptation, and model self-
evolution through the agent’s interaction with the
environment. Changes in one component prop-
agate through the loop and induce adaptive re-
sponses in others.

At each iteration, the agent first maintains
a self-state, including its own physical state
through embodiment self-adaptation, its inter-
nal cognition state through model self-evolution,
and its external world state through environment
self-prediction. Based on the agent’s self-state,
task self-switching determines the objectives to
pursue, followed by memory self-updating that
selectively curates experience relevant to the cur-
rent objectives. These signals then drive model
self-evolution, which updates model architec-
tures, optimization strategies, and evaluation cri-
teria. The evolved model outputs interaction
actions, through which the agent engages with
the environment. Subsequently, model self-
evolution updates the internal cognition state
through model evaluation, while embodiment
self-adaptation and environment self-prediction
update the own physical state and external world
state, respectively. Finally, the agent repeats this
loop over time.

Through this closed-loop organization, self-
evolving mechanisms operate across multiple
time scales and levels of abstraction. Fast
adaptation occurs within individual iterations
as tasks, memory, and actions are adjusted to
the current self-state, while slower evolution re-
shapes internal cognition state, own physical
state, and external world state over extended in-
teraction. Importantly, self-evolution is driven
by the agent’s self-state transitions by action-
feedback interactions rather than by external hu-
man guidance and empirical configurations. By
coordinating the co-evolution of memory, task,
model, embodiment, and environment within
a unified loop, self-evolving mechanisms en-
able continually adaptive intelligence with au-
tonomous evolution in dynamic open environ-
ments over time.

3. Methodologies

Recent studies have shown a growing inter-
est in self-evolving agents [72–74], which aim
to improve adaptability through continual in-
teraction with the environment. Specifically,
those methods explore self-evolution by using
prompt engineering [75,76], memory selection
[23,77–79], and tool refinement technologies
[80], and are often built upon pretrained Large
Language Models (LLMs) as unified end-to-end
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Table 1. Taxonomy of representative works for self-evolving embodied AI.

Module Taxonomy Representative Works

Memory
self-updating

Self-editing SAGE [17], Mem0 [18], Memory-R1 [19], Memento [20]

Self-organization
A-MEM [21], MemInsight [22], MemGen [23],
ReMe [24], Generative Agents [25]

Self-distillation ExpeL [26], AWM [27], MUSE [28]

Task
Self-switching

Self-selection SEC [29], WebRL [30], Agent0 [31], Mobile-Agent-E [32]
Self-generation ZeroGUI [33], AgentEvolver [34], WebEvolver [35]

Environment
Self-prediction

Understanding WM
DreamerV3 [12], DreamerV4 [36], JEPA [37], V-
JEPA [38], EvoAgent [39], NavMorph [40], WorMI [41]

Generative WM
Genie [13], Genie-2 [42], Matrix-Game-2 [43],
MineWorld [44], MineDreamer [45], OA [46]

Embodiment
Self-adaptation

Self-reconfiguration GET-Zero [47], BoT [48], PEAC [49]
Self-calibration UP-OSI [50], SPI-Active [51], OFCI [52]
Self-recovery Fall Recovery [53], Damage Recovery [54]

Model
Self-evolution

Self-restructuring
MaskTAS [55], PMoE [56], MoE-Adapters4CL [57], D-
MoLE [58], L2R [59], EEP [60]

Self-optimization
MoE-CL [61], SRT [62], SEAS [63], TTRL [64], Self-
Refine [65], Reflexion [66]

Self-evaluating
LLM-as-a-Judge [67], SER [68], RLME [69], RLIF [70],
MAE [71]

backbones [32,81]. Those methods demonstrate
the potential of self-evolution without explicit
human intervention, but environment perception
blocks and embodiment configurations are typi-
cally treated as fixed once deployed [82,83], lim-
iting their ability to support long-term autonomy
under variable embodiments and dynamic envi-
ronments.

To the best of our knowledge, this paper in-
troduces the first systematic framework that for-
malizes self-evolving embodied AI by integrat-
ing five core components and their self-evolving
mechanisms, which can achieve continually
adaptive intelligence with autonomous evolu-
tion in dynamic open environments over time.
Specifically, self-evolving embodied AI arises
from the closed-loop co-evolution of memory
self-updating, task self-switching, environment
self-prediction, embodiment self-adaptation, and
model self-evolution, driven by the agent’s self-
state transitions by action-feedback interactions.

Existing self-evolving agents belong only to
a subset of self-evolving embodied AI, which is
still in its early stages and has enormous poten-
tial for exploration. Based on these perspectives,
this section systematically reviews existing state-
of-the-art works for each component. Since self-
evolution is an end-to-end process, we organize
existing methods according to which component

of the self-evolving loop they primarily address.

3.1 Memory self-updating

Existing works on memory self-updating can be
broadly categorized into three classes: mem-
ory self-editing, memory self-organization, and
memory self-distillation. These categories pri-
marily differ in how experience is modified,
structured, and abstracted to support long-
horizon adaptation over time.

Memory self-editing. Those works focus on ex-
plicit operations that directly modify stored
memory content, including addition, update,
deletion, merging, and forgetting. SAGE [17]
introduces reflective mechanisms that regu-
late memory retention using forgetting curves.
Mem0 [18] formalizes memory editing by ex-
tracting salient facts from interaction histories
and consolidating them into long-term memory.
Memory-R1 [19] learns memory editing opera-
tions via reinforcement learning, enabling adap-
tive control over when to add, update, or delete
memory entries. Memento [20] optimizes mem-
ory rewriting and retrieval policies to maintain
compact and relevant long-term memory. To-
gether, these works treat memory evolution as an
operation-driven editing process.
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Memory self-organization. Those works empha-
size evolving the structure of memory rather than
the content. A-MEM [21] organizes agent mem-
ory as a dynamically indexed and linked note
network inspired by Zettelkasten-style knowl-
edge management. MemInsight [22] augments
raw episodic memory with semantic structure,
enabling more robust retrieval and reuse. Mem-
Gen [23] explores generative latent memory,
where memory is woven into a continuous la-
tent space that evolves with experience. Re-
lated systems such as ReMe [24] and Generative
Agents [25] further highlight the role of struc-
tured memory in supporting long-term reasoning
and consistency. These works view memory evo-
lution as an organizational process.

Memory self-distillation. Those works aim to
transform episodic experience into reusable
knowledge, skills, or workflows. ExpeL [26] ex-
tracts abstract insights and rules from interaction
trajectories to guide future behavior. AWM [27]
stores reusable task workflows, enabling agents
to transfer procedural knowledge across tasks.
MUSE [28] further organizes memory hierar-
chically to accumulate strategic and procedural
competence over long horizons. Collectively,
these works treat memory evolution as a distil-
lation process that converts episodic experiences
into a persistent capability.

3.2 Task Self-switching

Existing works on task self-switching can be
broadly categorized into two classes: task self-
selection and task self-generation. These two
lines differ in whether tasks are adaptively se-
lected from an evolving candidate set or gener-
ated online conditioned on the agent’s self-state
and environment dynamics.

Task self-selection. Those works formulate task
switching as a selection or scheduling prob-
lem, where an agent dynamically chooses which
task to pursue next based on learning progress
or interaction feedback. Representative works
include Self-Evolving Curriculum (SEC) [29],
which learns adaptive task scheduling policies;
WebRL [30], which employs a self-evolving on-
line curriculum for web interaction; Agent0 [31],
which co-evolves a curriculum agent with an ex-
ecutor; as well as hierarchical embodied systems
such as Mobile-Agent-E [32], where high-level
managers perform goal or subgoal selection dur-
ing execution.

Task self-generation. Those works focus on cre-
ating new tasks online rather than selecting from
a predefined pool, enabling task switching driven
by the agent’s self-state and exploration de-
mands. ZeroGUI [33] automatically generates
GUI tasks from interface states to support on-
line learning; AgentEvolver [34] generates new
tasks via self-questioning to guide exploration in
novel environments; and WebEvolver [35] lever-
ages a coevolving world model to generate self-
instructed interaction tasks.

3.3 Environment Self-prediction

Existing works on environment self-prediction
can be broadly categorized into two classes: un-
derstanding World Models (WMs) and genera-
tive world models. The former learns predictive
latent representations that support predicting and
planning without necessarily decoding raw ob-
servations, while the latter explicitly models the
observation-generation process (e.g., next-frame
or rollouts) with probabilistic generative models.

Understanding world models. Those works fo-
cus on learning predictive latent representations
of environment dynamics, typically instantiated
via RSSM-style latent dynamics models [12,36]
or JEPA-style predictive representation learn-
ing [37,38]. These works can achieve envi-
ronment self-prediction in self-evolving embod-
ied AI by continually evolving predictive latent
representations under distribution shifts, e.g.,
continual world-model updates for long-horizon
tasks in EvoAgent [39]; online-adaptive world
modeling for navigation in NavMorph [40]; test-
time composition of multiple domain-specific
understanding in WorMI [41].

Generative world models. Those works explicitly
predict future environment observations, com-
monly implemented via autoregressive Trans-
formers or diffusion models [84]. Recent
large-scale generative world models, such as
Genie [13], Genie-2 [42], and Matrix-Game-
2 [43], learn general-purpose environment dy-
namics from large-scale video data and enable
long-horizon imagination. In Minecraft and re-
lated open-world, interactive generative world
models such as MineWorld [44] and Mine-
Dreamer [45] provide action-conditioned video
generation, and OA [46] plans with online world
models in continual RL, forming a practical
foundation for environment self-prediction when
combined with continual data collection and on-
line refinement. In other applications, OA [46]
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plans with online world models in continual RL.

3.4 Embodiment Self-adaptation

Existing works on embodiment self-adaptation
can be broadly categorized into three classes:
embodiment self-reconfiguration, embodiment
self-calibration and embodiment self-recovery.
Embodiment self-adaptation addresses how the
agent maintains adaptability under changes in
heterogeneous morphology, sensing capabilities,
actuation limits, computational configurations,
and physical constraints.

Embodiment self-reconfiguration. Those works
focus on adapting to discrete configuration
changes, including heterogeneous morphology,
sensing layouts, and computational setups.
Those works learn embodiment-conditioned or
modular policies that generalize across robot
structures, enabling policy reuse without re-
training for each embodiment. Representative
works include GET-Zero [47], which models
embodiment topology via graph transformers
for zero-shot generalization; Body Transformer
(BoT) [48], which explicitly encodes embodi-
ment structure into policy learning; PEAC [49],
which pre-trains transferable representations for
cross-embodiment control.

Embodiment self-calibration. Those works target
continuous changes in actuation limits and phys-
ical constraints, such as mass variation, fric-
tion, contact dynamics, and sensing noise. This
line typically relies on online system identifica-
tion or latent parameter estimation to recalibrate
internal embodiment models during execution.
A classical foundation is the universal policy
with online system identification (UP-OSI) [50],
with recent extensions enabling active or contin-
ual calibration in contact-rich scenarios, such as
SPI-Active [51] and Online Friction Coefficient
Identification (OFCI) [52] for legged robots.

Embodiment self-recovery. Those works address
sudden degradation or failure of sensing, ac-
tuation, or computational resources, requiring
rapid restoration of executable behavior. This
line emphasizes fault-aware adaptation and re-
covery rather than parameter refinement. Rep-
resentative works include quality-diversity based
damage recovery [54], which maintains diverse
behavioral repertoires for fast adaptation under
damage, and learning-based fall or failure recov-
ery policies for legged robots [53].

3.5 Model Self-evolution

Existing works on model self-evolution can be
broadly categorized into three classes: model
self-restructuring, model self-optimization and
model self-evaluating.

Model self-restructuring. Those works evolve the
internal architecture of models through modu-
lar growth, expert composition, or adaptive rout-
ing to meet across embodiments, environments,
and tasks. Representative works include self-
supervised architecture search via masked distil-
lation [55], adaptive Mixture of Expert (MoE)
models for continual learning [56,57], dynamic
adapter or LoRA expert composition [58,59],
and modular growth with expert pruning [60].

Model self-optimization. Those works focus on
autonomously improving training and parameter
update strategies through continual tuning, self-
generated feedback, or test-time learning. Typ-
ical works include continual instruction tuning
without human labels [61], learning from lan-
guage feedback in SRT [62], adversarial self-
improvement in SEAS [63], test-time reinforce-
ment learning [64], and iterative self-refinement
and reflection-based optimization [65,66].

Model self-evaluating. Those works evolve eval-
uation criteria and reward signals to guide learn-
ing in the absence of reliable ground-truth su-
pervision. This line is characterized by LLM-
as-a-judge frameworks [67], self-evolved reward
learning [68], reinforcement learning from meta-
evaluation [69], learning without external re-
wards [70], and multi-judge co-evolution [71].

4. Applications

This section discuss three practical applica-
tions, illustrating how self-evolving embodied
AI aligns with practical requirements under envi-
ronment distribution shifts, limited supervision,
and variable embodiments: autonomous service
robotics, autonomous driving, and autonomous
Unmanned Aerial Vehicles (UAVs).

4.1 Autonomous Service Robotics

Autonomous service robots operate in open-
ended human-centered environments where ob-
ject layouts, user preferences, and task specifica-
tions change over time [85]. Recent advances in
open-vocabulary mobile manipulation and gen-
eralist robot policies demonstrate strong gener-
alization across tasks and scenes [86–88], but
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comprehensive deployment still requires contin-
ual adaptation.

In these applications, memory self-updating
is essential for prioritizing rare but consequen-
tial interaction failures over redundant routine
behavior. Task self-switching enables robots to
reinterpret and adjust objectives based on user
intent and contextual changes. Embodiment self-
adaptation supports deployment across heteroge-
neous platforms with varying sensing, actuation,
and payload constraints. Together, these compo-
nents illustrate how self-evolution enables sus-
tained autonomy beyond human-crafted house-
hold benchmarks.

4.2 Autonomous Driving

Autonomous driving represents a safety-critical
instantiation of embodied AI [89] in dynamic
environments. Real-world traffic exhibits non-
stationary dynamics, rare corner cases, and com-
plex interactions with humans [90], which can-
not be exhaustively captured during training. Re-
cent work increasingly relies on predictive world
models [91] and high-level reasoning [92] to
support planning and simulation.

In these applications, environment self-
prediction plays a central role by enabling agents
to predict future events and compute long-
horizon rewards. Model self-evolution supports
adaptation to distribution shifts such as weather,
road structure, and traffic patterns. However,
unlike other applications, autonomous driving
highlights the necessity of embodiment self-
adaptation, where the agent’s action must be reg-
ulated to ensure safety, interpretability, and reli-
ability. This application exemplifies the tension
between autonomy and control in self-evolving
embodied AI.

4.3 Autonomous UAVs

Autonomous UAVs [93,94] operate under fast
dynamics, partial observability, and strict physi-
cal constraints, making them a natural testbed for
self-evolving embodied AI. UAV missions such
as inspection [95], planning [96], and search-
and-rescue [97] require continual adaptation to
dynamic environments [98], weather conditions
[99], and task objectives [100].

In these applications, embodiment self-
adaptation is critical due to energy limits, ac-
tuator uncertainty, and platform heterogeneity.
Environment self-prediction supports trajectory
imagination and online replanning under fast-
changing dynamics. Model self-evolution en-
ables lightweight and efficient updates com-

patible with onboard computational constraints.
Compared with ground robots, UAVs emphasize
efficient experience self-updating and tightly
coupled evolution across embodiment, environ-
ment, and model, demonstrating the feasibility
of self-evolving AI under stringent physical con-
straints.

5. Future Directions

Self-evolving embodied AI presents a new
paradigm for moving embodied AI beyond
human-crafted setting to in-the-wild setting,
which is still in its early stages and has enor-
mous potential for exploration. In addition to
the self-evolution of each component and the co-
evolution between components, future progress
has three critical questions to address: (1) how
to control self-evolution to ensure stability and
efficiency, (2) how to make self-evolution trust-
worthy for safe deployment, and (3) how to scale
self-evolution to swarm-level systems.

5.1 Controllable Self-evolution

A core challenge for self-evolving embodied AI
is ensuring that the self-evolution process re-
mains controllable. While self-evolution allows
agents to adapt to dynamic environments, uncon-
trolled evolution may result in instability, per-
formance degradation, or unintended behaviors.
To address this, future research should explore
methods for regulating the scope, rate, and di-
rection of self-evolution. Hierarchical control ar-
chitectures could separate fast control loops from
slower evolution loops, providing a balance be-
tween efficiency and stability. Moreover, devel-
oping interpretable feedback mechanisms is cru-
cial for understanding and controlling the evolu-
tion process. Quantifiable controllability crite-
ria, such as stability margins or adaptation bud-
gets, will be essential for reliable and predictable
self-evolution.

5.2 Trustworthy Self-evolution

The applications of self-evolving embodied AI
to be deployed in real-world, their self-evolution
must be trustworthy. This requires ensuring
that self-evolution processes are safe, transpar-
ent, and accountable. One significant chal-
lenge is managing the non-stationarity intro-
duced by self-evolution, both in the environ-
ment and within the agent itself, complicating
verification and validation. Future work should
focus on monitoring, auditing, and explaining
self-evolution processes to allow for greater hu-
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man oversight and understanding of what has
changed and why. This includes uncertainty-
aware evolution and the implementation of roll-
back mechanisms to undo harmful adaptations.
Aligning self-evolution with human values over
long periods remains a critical avenue for re-
search when explicit supervision is limited.

5.3 Swarm Self-evolution

While existing studies on self-evolving embod-
ied AI primarily focus on individual agents,
many real-world applications involve multiple
agents operating as a collective. Swarm self-
evolution extends the concept of self-evolution
to multi-agent systems, where self-evolution
occurs simultaneously at both the individual
and swarm levels. Challenges in swarm self-
evolution include how agents share experiences,
coordinate tasks, and co-evolve their internal
models under constraints. Future research
should explore mechanisms for distributed mem-
ory, policy sharing, and role differentiation to
support swarm self-evolution. Understanding
emergent behaviors from swarm self-evolving
agents and ensuring that swarm-level evolution
aligns with collective objectives is also crucial.
Swarm self-evolution has the potential to unlock
adaptive intelligence on a scale that exceeds in-
dividual agent capabilities, enabling robust, flex-
ible, and resilient embodied systems.

6. Conclusion

This paper presents a new paradigm of self-
evolving embodied AI, enabling embodied AI
to move from human-crafted setting to in-the-
wild setting. Self-evolving embodied AI is an
intelligent system formed by agents and their
environment through perception self-evolution,
cognition self-evolution, and interaction self-
evolution. Specifically, agents operate based
on their changing state and environment with
memory self-updating, task self-switching, en-
vironment self-prediction, embodiment self-
adaptation, as well as model self-evolution. In
this paradigm, agents can achieve continually
adaptive intelligence with autonomous evolution
over time. We believe that self-evolving embod-
ied AI can provide a new perspective toward gen-
eral artificial intelligence.
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