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Figure 1: Cross-view geo-localization depends on finding the correct location bymatching drone-view images with satellite-view
images. Weather variants, including fog, rain, snow, and multiple weather compositions, are randomly sampled to increase the
difficulty of geo-localization. The red box represents the correct match we want to achieve regardless of weather conditions.

ABSTRACT
Cross-view geo-localization in GNSS-denied environments aims
to determine an unknown location by matching drone-view im-
ages with the correct geo-tagged satellite-view images from a large
gallery. Recent research shows that learning discriminative image
representations under specific weather conditions can significantly
enhance performance. However, the frequent occurrence of unseen
extreme weather conditions hinders progress. This paper intro-
duces MCGF, a Multi-weather Cross-view Geo-localization Frame-
work designed to dynamically adapt to unseen weather conditions.
MCGF establishes a joint optimization between image restoration
and geo-localization using denoising diffusion models. For image

∗Corresponding author.

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

restoration, MCGF incorporates a shared encoder and a lightweight
restoration module to help the backbone eliminate weather-specific
information. For geo-localization, MCGF uses EVA-02 as a backbone
for feature extraction, with cross-entropy loss for training and co-
sine distance for testing. Extensive experiments on University160k-
WX demonstrate that MCGF achieves competitive results for geo-
localization in varying weather conditions.

CCS CONCEPTS
• Computing methodologies→ Image representations; • In-
formation systems → Top-k retrieval in databases; Learning to
rank.

KEYWORDS
Cross-view Geo-localization, Multi-weather Restoration, Denoising
Diffusion Model

1 INTRODUCTION
Cross-view geo-localization[1] aims to determine an unknown lo-
cation by matching drone-view images with the correct geo-tagged
satellite-view images from a large gallery, based on geographic
features in the images, as shown in Figure 1. This task is crucial

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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for accurate navigation and safe planning[2–4] in GNSS-denied
autonomous drone flights. Recent advances in vision transformer
have led to significant breakthroughs in various cross-view geo-
localization tasks, such as drone localization[5, 6] (matching drone-
view query images with geo-tagged satellite-view images) and
drone navigation[7, 8] (using satellite-view query images to guide
drones to a target area). However, varying weather conditions,
including fog, rain, snow, wind, light, dark, and combinations of
multiple weather types, reduce visibility, corrupt the information
captured by an image, significantly complicate image geographic
representation, and lead to a sharp decline in task performance.
The major challenge lies in adaptively achieving unbiased image
geographic representation under diverse weather conditions.

A clean image without any weather degradation is desired in
cross-view geo-localization. Early methods for weather removal
using empirical observations [9], Convolutional Neural Networks
(CNNs) based and transformer-based for deraining[10], dehazing[11],
and desnowing[12]. Most of these methods achieve excellent perfor-
mance, but these are not generic solutions for all adverse weather
removal problems as the networks have to be trained separately for
each weather[13]. The All-in-One Network[14] proposes a frame-
work with separate encoders for each weather but a generic de-
coder and neural architecture search across weather-specific opti-
mized encoders. The Transweather network[15] using vision trans-
former construction has a single encoder and a decoder and learns
weather-type queries to solve all adverse weather removal effi-
ciently. Wetherdiff[16] using diffusion models enables size-agnostic
image restoration by using a guided denoising process. To our in-
terest, these three studies focus on the inability of specific weather
combinations to adapt to newweather types. Recently,MuSe-Net[17]
employs a two-branch neural network containing one multiple-
environment style extraction network and one self-adaptive feature
extraction network to dynamically adjust the domain shift caused
by environmental changes. However, this method does not perform
well in some real-world high-intensity rains with a splattering
effect.

To overcome these obstacles, this paper presents MCGF, a Multi-
weather Cross-view Geo-localization Framework designed to dy-
namically adapt to unseen weather conditions, which establishes a
joint optimization between image restoration and geo-localization
using denoising diffusion models. In image restoration, MCGF in-
cludes a shared encoder and a lightweight restoration module that
prompts the backbone to provide more beneficial information to
eliminate the influence of weather-specific information. In geo-
localization, MCGF uses EVA-02[18] as a backbone for feature ex-
traction and uses cross-entropy loss for training and cosine distance
for testing. EVA-02 is a ViT[19] model obtained using a series of
stable optimization methods, which allows MCGF to extract more
favorable information from drone and satellite images while using
fewer parameters.

Diffusion models increasingly serve discriminative tasks such as
classification and image segmentation. However, the geo-localization
task with diffusion models under adverse weather conditions re-
mains a challenging and under-explored area. Inspired by its pow-
erful modeling capability and stable training process, we utilize the
diffusion model to learn the denoising process from noisy images

to clean images, facilitating robust matching in the presence of
multi-weather.

Extensive experiments on University160k-WX demonstrate that
MCGF achieves competitive results for geo-localization in varying
weather conditions. The code will be released at https://github.com/
fengtt42/ACMMM24-Solution-MCGF.

2 METHOD
MCGF establishes a joint optimization between image restora-
tion and geo-localization using denoising diffusion models. The
overview structure of MCGF is shown in Figure 2.

2.1 Denoising Diffusion Models
The diffusion model is a probabilistic model that has attracted
considerable interest in the computer vision community. It can
remarkably approximate the original data distribution by gradually
adding Gaussian noise to the training data and learning to reverse
this diffusion process.

The forward process is a fixed Markov Chain that sequentially
corrupts the data 𝑧0 ∼ 𝑞𝜃 (𝑧0) at𝑇 diffusion time steps, by injecting
Gaussian noise according to a variance schedule 𝛽1, ..., 𝛽𝑇 . Given
the clean drone-view images 𝑧0, the forward process at step 𝑡 is
defined as:

𝑞𝜃 (z𝑡 | z𝑡−1) = N(z𝑡 ;
√
𝛼𝑡 z𝑡−1, 𝛽𝑡 I) (1)

𝑞𝜃 (z1:𝑇 | z0) =
𝑇∏
𝑡=1

𝑞𝜃 (𝑧𝑡 | 𝑧𝑡−1) (2)

𝑞𝜃 (z𝑡 | z0) = N(z𝑡 ;
√
𝛼𝑡 z0, (1 − 𝛼𝑡 )I) (3)

where 𝛼𝑡 and 𝛽𝑡 are noise schedule parameters, 𝛼𝑡 =
∏𝑡
𝑠=1 𝛼𝑠 and

𝛼𝑡 = 1 − 𝛽𝑡 .
The reverse process attempts to remove the noise added in the

forward process. The reverse process defined by the joint distribu-
tion 𝑝𝜃 (𝑧0:𝑇 ) is a Markov Chain with learned Gaussian denoising
transitions starting at a standard normal prior 𝑝𝜃 (𝑧𝑇 ) = N(𝑧𝑇 ; 0; I).
At step 𝑡 , the reverse process is defined as:

𝑝𝜃 (z0:𝑇 ) = 𝑝 (𝑧𝑇 )
𝑇∏
𝑡=1

𝑝𝜃 (𝑧𝑡−1 | 𝑧𝑡 ) (4)

𝑝𝜃 (z𝑡−1 | z𝑡 ) = N(z𝑡−1; 𝜇𝜃 (z𝑡 , 𝑡), Σ𝜃 (z𝑡 , 𝑡)) (5)

For simplicity, we assume Σ𝜃 is a known constant, thus the
reverse process simplifies to:

𝑝𝜃 (z𝑡−1 | z𝑡 ) = N(z𝑡−1; 𝜇𝜃 (z𝑡 , 𝑡), 𝜎2I) (6)

Here the reverse process is parameterized by a neural network
that estimates 𝜇𝜃 (z𝑡 , 𝑡) and Σ𝜃 (z𝑡 , 𝑡)). The forward process vari-
ance schedule 𝛽𝑡 can be learned jointly with the model or kept
constant, ensuring that 𝑧𝑡 approximately follows a standard normal
distribution.

The training objective of the denoising diffusion model is to max-
imize the likelihood of the reverse process, which can be achieved
by minimizing the variational lower bound (VLB) of the negative
log-likelihood. The VLB is given by:

LVLB = E𝑞 [− log𝑝𝜃 (z0)+
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Figure 2: The overview structure ofMCGF.MCGF establishes a joint optimization between image restoration and geo-localization
using denoising diffusion models.

𝑇∑︁
𝑡=1

D𝐾𝐿 [𝑞𝜃 (z𝑡−1 | z𝑡 , z0) ∥ 𝑝𝜃 (z𝑡−1 | z𝑡 )] (7)

In practice, this can be decomposed into reconstruction error and
KL divergence terms for each step, which are optimized accordingly.

2.2 Shared Encoder
To enhance feature representation and improve subsequent image
restoration and geo-localization, we utilize the widely adopted state-
of-the-art transformer-based model, Swin Transformer[20], as the
shared encoder in our unified framework. The Swin Transformer
is a hierarchical transformer that employs shifted windows, which
restricts attention computation to non-overlapping local windows,
making it adaptable for modeling at various scales. To balance
computational overhead and inference speed, we select the tiny
version of Swin Transformer as the default backbone.

2.3 Restoration Module
The restoration module utilizes a straightforward CNN-based en-
coder architecture, consisting of three deconvolutions, an upsam-
pling, and a 𝑇𝑎𝑛ℎ activation function. It facilitates geo-localization
by revealing clean features at multiple scales and produces weather-
free images. We adopt a simple Mean Squared Error (MSE) as the
loss function of the restoration subnetwork.

𝐿𝑟𝑒𝑠 =
1
𝑛

𝑛∑︁
𝑖=1

(𝑌𝑖 − 𝑌𝑖 )2 (8)

where 𝑛 denotes the patch size. It can minimize the pixel-wise
difference between the clean image 𝑌𝑖 and the estimated weather-
free image 𝑌𝑖 .

2.4 Diffusive Matching Module
Feature extraction.MCGF introduces the latest transformer-based
visual representation, EVA-02, as the backbone of 𝐸𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (�) in the
network. In fact, EVA-02 has shown superior performance in most
CV downstream tasks. EVA’s architecture is a vanilla ViT encoder
that can be regarded as a student model, with a shape following ViT
giant and the vision encoder of BEiT-3. A big dataset, consisting
of several typical and openly accessible datasets with 29.6 million
images in total, is used as pre-training data. After pre-training, EVA
is scaled up to 1.0B parameters compared to CLIP. Based on the
theory of EVA, larger CLIP-like models will provide more robust
target representations for masking image modeling.

Loss calculation. The feature map extracted by 𝐸𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (�) en-
coder is fed into a multilayer perceptron (MLP) to calculate the
cross-entropy loss for training or cosine distance for testing. MLP
includes 2 dense layers, a Batch Normalization (BN) layer, a drop
out layer, and a softmax activation function.

Optimization.MCGF contains two loss functions, one is image
restoration loss 𝐿𝑟𝑒𝑠 , and the other is matching loss. In the gradual
denoising process of the diffusing model, the matching model can
gradually obtain clearer drone-viewing images. This process en-
ables the matching model to run at multiple granularities, resulting
in more accurate matching results.
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Table 1: Matching results compared with SOTA methods.

Methods R@1 R@5 R@10 AP

LPN[22] 7.98 10.25 11.21 8.49
MBEG[23] 26.17 32.84 35.32 29.32

Muse-Net[17] 50.48 63.19 67.34 53.27
MCGF(ours) 84.68 91.36 93.00 88.71

3 EXPERIMENT
Dataset. University160k-WX[21] is a multi-weather cross-view geo-
localization dataset, which extends the University-1652 dataset with
extra 167,486 satellite-view gallery distractors. University160k-WX
further introduces weather variants on University160k, including
fog, rain, snow andmultiple weather compositions. These distractor
satellite-view images have a size of 1024 × 1024 and are obtained
by cutting orthophoto images of real urban and surrounding areas.
Multiple weathers are randomly sampled to increase the difficulty
of representation learning.

Implement details. We employed the EVA-02 model, which is
based on the Vision Transformer, as the backbone for diffusive
matching module. This model has been trained and fine-tuned on
many large vision datasets. In our experiments, we resized each
input image to a fixed size of 448 × 448 pixels. During training, we
used SGD as the optimizer with a momentum of 0.9 and weight de-
cay of 5 × 104, with a mini-batch size of 16. The initial learning rate
was set to 0.01 for the backbone layer and 0.1 for the classification
layer. Our model was built using Pytorch.

Evaluation metrics. The performance of our method is evaluated
by the Recall@K (R@K) and the average precision (AP). R@K de-
notes the proportion of correctly localized images in the top-K list,
and R@1 is an important indicator. AP is equal to the area under
the Precision-Recall curve. Higher scores of R@K and AP indicate
better performance of the network.

3.1 Geo-localization results
We train MCGF with outstanding algorithms (including LPN[22],
MBEG[23], and Muse-Net[17]) on the University-160k-WX train
set until convergence and obtain optimal results. We test all trained
models on the official unified test set provided by the competition
organizer. All test results can be displayed and downloaded on the
competition result submission platform. Table 1 shows thatMCGF is
significantly better than existing methods in all evaluation metrics.
Especially compared with the latest research Muse-Net, MCGF
can achieve a 67.75% performance improvement in the Recall@1
indicator. MCGF shows considerable potential for geo-localization
as a general framework.

3.2 Visualization
As shown in Figure 3, we visualise heatmaps and Top-5 matching
results generated by our method in 10 different weather conditions.
Since the drone is flying around, the drone images is not only
interfered by weather but also by rotational posture. Therefore, we
also show the impact of drone posture changes on geo-localization
in Figure 3. The heatmap shows that our method can accurately
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Figure 3: Visualization of heatmaps generated by our method
and Top-5 matching results for a drone-view image in differ-
ent conditions.

extract the shape and relative position of geographic targets under
weather and pose interference. From the matching results shown,
we observe that our model obtains the true match in the Top-1 yet
the remaining matching results are inconsistent under 10 different
conditions, which also indicates that the adjusted features still
contain a few discrepancies.

3.3 Conclusion
In this paper, we presents MCGF, a Multi-weather Cross-view Geo-
localization Framework designed to dynamically adapt to unseen
weather conditions, which establishes a joint optimization between
image restoration and geo-localization using denoising diffusion
models. In image restoration, MCGF includes a shared encoder and
a lightweight restoration module. In geo-localization, MCGF uses
EVA-02 as a backbone for feature extraction and uses cross-entropy
loss for training and cosine distance for testing. Extensive exper-
iments on University160k-WX demonstrate that MCGF achieves
competitive results for geo-localization in varying weather.
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