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Abstract—In today’s Internet, bandwidth dynamics are in-
evitable, and hence, the bitrate for live streaming applications
should also be dynamically adjusted. However, in existing HTTP-
based adaptive streaming (HAS), bitrate switching can only be
performed at segment boundaries, making decisions unresponsive
and often inaccurate. In this paper, we start from a close
investigation on the impact of the segment length in HAS
and accordingly present VHAS, an extension towards intelligent
variable-length segmentation, which makes client-side decisions
based on the massive amount of real-time information from
the network and viewers. VHAS implements a smart trigger
mechanism that balances accuracy and overhead for variable-
length segmentation. We further develop an adaptive bitrate
switching algorithm with data-driven I-frame prediction, which is
tailored to individual viewers to minimize bitrate mismatches. We
evaluate VHAS via extensive trace-driven simulations, and our
results demonstrate that compared with state-of-the-art solutions,
VHAS achieves 15% - 49% gains in QoE, with a noticeable
bandwidth reduction of 37% - 57%.

Index Terms—HTTP Adaptive Streaming, Segmentation, Bi-
trate Switching, I-frame Prediction, Reinforcement Learning

I. INTRODUCTION

REAL-TIME live streaming applications, such as YouTube
Live, Twitter’s Periscope, Huya.tv and Douyu.tv, have

been experiencing dramatic growth over the past decade,
attracting millions of active users [1]. Bandwidth dynamics are
inevitable in today’s Internet, and hence, the bitrate for live
streaming applications should be adaptive as well. Existing
HTTP-based adaptive streaming (HAS) seeks to dynamically
adjust the bitrate in real time yet being fully compatible with
dominating HTTP protocol for Web content distribution [2]–
[4]. It has seen great success in real-world deployment, e.g.,
Microsoft Smooth Streaming (MSS1), Apple’s HTTP Live
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1http://go.microsoft.com/?linkid=9682896.

Streaming (HLS2), Adobe HDS3, and Akamai HD4, to name
but a few examples.

In the standard HAS (see Fig. 1(a)), each video is encoded
into streams of multiple discrete bitrates and each stream is
partitioned into multiple segments. A client-side video player
can dynamically choose a video bitrate that best matches
the current network state. The switch to a different video
bitrate, however, occurs only at the boundary of a segment,
and the corresponding delay can be quite long, e.g., 2-8
seconds [5]. This coarse granularity makes switch decisions
unresponsive and often inaccurate given the much quicker
network bandwidth changes (typically an order of magnitude
shorter) [6]. An enhancement is to divide a segment into
shorter ones by inserting intra-coded frames (I-frames) [7]
(see Fig. 1(b)), where each I-frame indicates the beginning
of a group of pictures (GOP), i.e., a segment boundary.
This effectively accelerates bitrate switching and the better
responsiveness improves accuracy as well. However, since the
size of an I-frame is 8-10 times greater than that of a P- or
B-frame, the overhead can be significant if not well-controlled.

In this paper, we propose VHAS (see Fig. 1(c)), an extension
towards fast and accurate bitrate switching with minimize
bandwidth overhead. In VHAS, each video is encoded into
streams of multiple discrete bitrates and each stream is par-
titioned into multiple variable-length segments. VHAS then
implements a smart trigger mechanism that balances accuracy
and overhead for variable-length segmentation based on an
Adaptive Bitrate (ABR) algorithm. Existing ABR algorithms
improve end users’ quality of experience (QoE) by consid-
ering network bandwidth and client buffer information [8]–
[15]. Recent works have also applied such advanced tools
as reinforcement learning (RL) [5], [16]. However, these
ABR algorithms are only applicable to the standard HAS, in
which streams of different bitrates are of the same segment
structure, i.e., their segment boundaries are well aligned, and
hence a client can directly switch across streams if the next
frame is an I-frame, without boundary check. For VHAS,
the segments are of variable lengths and hence each stream
will have a distinct segment structure. A decision to adjust
the video bitrate, i.e., switch to another stream, cannot be
simply triggered by observing the segment boundary of the

2https://developer.apple.com/resources/http-streaming.
3http://www.adobe.com/products/hds-dynamic-streaming.html.
4http://wwwns.akamai.com/hdnetwork/demo/index.html.
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Fig. 1. HTTP-based adaptive streaming.

current stream. Suspending the decision till the next I-frame
in the target stream however would introduce a noticeable
mismatch against the expected optimal bitrate. We address this
challenge by a data-driven I-frame prediction that is based on
the massive amount of real-time information from the network
and viewers. Through cascading a deep neural network (DNN)
[17] and RL network, our client-side decision is tailored to
individual viewers to minimize the bitrate mismatches.

We evaluate VHAS via extensive trace-driven simulations
with three real-world datasets. Our results demonstrate that
compared with state-of-the-art solutions, VHAS achieves 15%
- 49% gains in QoE, with a noticeable bandwidth reduction
of 37% - 57%; meanwhile, VHAS also yields a good effect
under various network conditions.

The remainder of the paper is organized as follows. Section
II describes the design details of VHAS. Section III presents
the implementation details and evaluation results of VHAS.
Section IV introduces related work. Conclusions and future
work are discussed in Section V.

II. VARIABLE-LENGTH HTTP ADAPTIVE STREAMING

In this section, we describe the design details of variable-
length HTTP adaptive streaming (VHAS), including how to
divide video streams into variable-length segments and how
to use a trigger mechanism to achieve timely and accurate
bitrate switching.

A. Variable-Length Segmentation

In the standard HAS (see Fig. 1(a)), inserting more I-
frames can increase the number of segments and effectively
improve the timeliness of bitrate switching, which is the
essential strategy of the short-segment HAS (see Fig. 1(b)) [7].
Unfortunately, it will also significantly increase the bandwidth
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Fig. 2. The comparison of frame sizes in video at different bitrates.

overhead, particularly for video streams of high bitrates (see
Fig. 2). For example, inserting an I-frame for a 500 Kbps
video only increases the video size by 250 KB; however,
for an 1850 Kbps video, inserting an I-frame increases the
bandwidth overhead by at least 800 KB. To manage the
tradeoff between accurate bitrate switching and bandwidth
overhead, we introduce variable-length segmentation in which
a video stream of a lower bitrate is divided into shorter
segments by inserting more I-frames (see Fig. 1(c)). We use
function y = Kx to determine the number of I-frames inserted
for video streams at different bitrates.

Fig. 3 demonstrates VHAS’s end-to-end data transmission
process: (1) An encoder integrated into a live source partitions
video streams into standard segments, which is the same as
the segmentation operation in the standard HAS. Then the
encoder constructs variable-length segments for each standard
segment by inserted I-frames and pushes them to a live origin
for redistribution; (2) The live origin pushes the variable-length
segments to streaming media servers and updates the manifest
files of this video in video servers (video authentication service
providers); (3) Upon the request of a client, the video server
responds with a manifest file that lists all available video
bitrates and the position information of all downloadable
variable-length segments. At decision point t (the standard
segment boundary), the player of the client calculates video
bitrate q by an ABR algorithm according to the current state
information and requests the newest variable-length segment
N of quality q from the streaming media server. In the
download process for segment N , we start from decision
point t to construct multiple sub-decision points ti with equal
intervals (referred to as a sub-decision period, e.g., 0.5s). At ti,
the player uses the ABR algorithm to make a bitrate decision
qi, sends the selected bitrate qi to the streaming media server,
and updates the bitrate switching trigger. Specifically, when
the selected bitrate qi video stream has an I-frame (located at
short segment boundary) in the next sub-decision period, the
bitrate switching triggered from bitrate q to qi. The specific
decision process is shown in Fig. 3(b).

B. QoE Optimization

We now consider the overall system optimization with our
variable-length segmentation. Table I lists the notations used
for our modelling.

We assume that in a city-level region the network service
provider has one CDN server (the live origin) c and a set of
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Fig. 3. Variable-length HTTP adaptive streaming.

streaming media servers S = {1, 2, ..., S} distributed across
the city. All of them are connected via the backhaul network.
Each streaming media server is capable of hosting all the
video streams at bitrates V = {1, 2, ..., V }. We assume that U
viewers U = {1, 2, ..., U} have viewing requests at different
video bitrates. Based on each viewer’s individual bandwidth
condition, the video bitrate requested by viewer u is denoted
as φ(u,d) = v

′
, where d = 0 (resp. 1) signifies at each (resp.

sub) decision point. We use a binary variable X to denote
whether the trigger in the streaming media server calls bitrate
switching, where X(u,d)

(v,v′) = 1 (resp. 0) indicates that the trigger
(resp. not) calls bitrate switching from v to v

′
, where d = 0

(resp. 1) also signifies at each (resp. sub) decision point.

We consider four QoE metrics for each viewer, i.e., video
quality [5], [14], video latency [18], bitrate smoothness level
[5], bitrate mismatch level [18]. We can calculate the video
quality Θ(u) of viewer u as follows:

Θ(u) =
N∑

n=1

F∑
f=1

φ
(u,0)
(n,f)D(n,f)+

N∑
n=1

F∑
f=1

X
(u,1)
(v,v′)(φ

(u,1)
(n,f) − φ

(u,0)
(n,f))D(n,f)

(1)

where n represents the number of segments that viewer u
requests, n ∈ {1, 2, ..., N}; (n, f) represents the f-th frame
of the segment n, f ∈ {1, 2, ..., F}; and D(n,f) represents the
duration time of the (n, f) frame. The first part of the equation
represents the video quality if the trigger only performs
bitrate switching at each decision point, which is equivalent
to running only in the standard HAS, while the second part
signifies how much the user experience can be improved by
VHAS at each sub-decision point.

The video latency Γ (u) of viewer u can be calculated as:

Γ (u) =
N∑

n=1

F∑
f=1

(T
(u,0)
(v∗,v) + C

(u)
(n,f) + L

(u,s)
(n,f) + C

(s)
(n,f))+

N∑
n=1

X
(u,1)
(v,v′)(T

(u,1)

(v∗,v′ )
− T (u,0)

(v∗,v))

(2)

where T (u,e)
(v∗,v) is the transcoding latency from v∗ to v, where

e = 0 (resp. 1) means transcoding to a fixed-length (variable-
length) segment. Note that if v = v∗, there is no need to
transcode (T (u,e)

(v∗,v) = 0). C(u)
(n,f) indicates the player’s cache

size. L(u,s)
(n,f) is the transmission latency between viewer u and

server s. C(s)
(n,f) is the cache size in streaming media server s.

The first part of the equation represents the latency overhead if
the transcoding server transcodes only at each decision point,
while the second part incorporates the transcoding overhead
added by transcoding to the variable-length segment.

The bitrate smoothness level Φ(u) is calculated as:

Φ(u) =
N∑

n=1

∑
d=0

X
(u,d)
(v,v′)

1

|I(v
′)

(n,d) − I
(v)
(n,d)|+ 1

(3)

where I
(v)
(n,d) represents the level of video bitrate requested

by viewer u at each decision point or sub-decision point. For
instance, for a video that is encoded by an H.264/MPEG-4
codec at bitrates {300, 750, 1200, 1850, 2850, 4300} Kbps,
we have I(v) = {0, 1, 2, 3, 4, 5}. The bitrate smoothness level
Φ(u) can avoid a decrease in the user’s viewing experience
that would result from the sharp jitter of video bitrate.

The bitrate mismatch level Ψ (u) is calculated as:

Ψ (u) =
N∑

n=1

F∑
f=1

(1−X(u,d)
(v,v′)) (4)

It indicates the matching degree between the client’s re-
quested bitrate (v′ = φ(u,d)) and received bitrate (v). At
each decision point, since segments across bitrates are aligned
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and the required bitrate switching operation can always be
performed, Ψ (u) is equal to 0. In a sub-decision point, it
however depends on the accuracy of the I-frame prediction
in the next sub-decision period. The lower Ψ (u) is, the better
the matching of the video bitrate received by the viewer u to
that requested.

In addition to the QoE metrics for each viewer, we also con-
sider the overall the bandwidth overhead for the construction
of variable-length segments may increase bandwidth demand.

Λ(u) =
N∑

n=1

F∑
f=1

B
(u,0)
(n,f) +

N∑
n=1

F∑
f=1

X
(u,1)
(v,v′)(B

(u,1)
(n,f) −B

(u,0)
(n,f))

(5)

where B(u,d)
(n,f) is the bandwidth consumption during the (n, f)

frame. The first part of the equation represents the bandwidth
overhead if we just use the fixed-length segmentation for data
transmission. The second part shows the bandwidth overhead
added by the construction of variable-length segments, which
indicates how much the user experience can be improved by
our VHAS relative to the standard HAS.

Integrating viewers’ QoE demands (Eq. 1, Eq. 2, Eq. 3,
and Eq. 4) and the bandwidth overhead (Eq. 5), we obtain
the following optimization objective (Ω) that minimizes the
sum of the penalties, including the QoE penalty (the penalty
in video quality, video latency, bitrate smoothness, and bitrate
matching) and the penalty for the bandwidth overhead:

Min : α(−α(u)
1 Θ(u)+α

(u)
2 Γ (u)−α(u)

3 Φ(u)+α
(u)
4 Ψ (u))+βΛ(u)

(6)
s.t.

0 < φ(u,d) ≤ v∗,∀d (7)

X
(u,d)
(v,v′) = 1,∃v = v′ (8)

T
(u,e)
(v∗,v) = 0,∃v = v∗ (9)

where α and β are weighting parameters to tune the QoE
penalty and bandwidth overhead penalty, respectively, and
α
(u)
1 , α(u)

2 , α(u)
3 and α

(u)
4 are personalized QoE preference

factors for viewer u. Eq. 7 guarantees that the video bitrate
requested by viewer u can be transcoded by a transcoding
server. When the bitrate requested by viewer u is equal to the
currently executed bitrate, Eq. 8 indicates that bitrate switch
operations have been called. When the requested bitrate of
viewer u is equal to the highest bitrate, Eq. 9 indicates that
there is no need to transcode.

In summary, as the segment length becomes shorter, the
timeliness of bitrate switching is improved, but the transcoding
latency overhead (Eq. 2) and the bandwidth overhead (Eq. 5)
also increase; the higher the bitrate mismatch level Ψ (u) (Eq.
4), the worse the performance of VHAS. The ABR algorithm
must balance a variety of QoE goals (Eq. 6), such as max-
imizing video quality, minimizing video latency, maintaining
video quality smoothness, minimizing bitrate mismatch level
and minimizing bandwidth resource usage, and many of them
are inherently conflicting. We accordingly design an adaptive
bitrate switching algorithm with data-driven I-frame prediction
to solve the challenges.

TABLE I
NOTATIONS USED IN THIS SUBSECTION

c live origin
S the streaming media server list
N the segment list
F the frame list in the segment
V the video bitrate list
U the set of all the viewers
d whether current decision point is a sub-decision point
e whether transcode to a variable-length segment

φ(u,d) the request video bitrate of the viewer u
X

(u,d)
(v,v′) whether the trigger calls bitrate switching from v to v

′

Θ(u) the video quality for the viewer u
D(n,f) the duration time of the (n, f) frame
Γ (u) the video latency for viewer u
T

(u,e)
(v∗,v) the transcoding latency from v∗ to v

L(u,s) the transmission latency between viewer u and server s
C(u) the player cache size for the viewer u
C(s) the streaming media server’s cache size for the viewer u
Φ(u) the bitrate smoothness level for the viewer u
I(v) the level of the video bitrate request of the viewer u
Ψ (u) the bitrate mismatch level for the viewer u
Λ(u) the total bandwidth overhead to the viewer u
B(u,d) the bandwidth consumption duration the decision period d
α,β the weighted parameters to tune the QoE penalty and band-

width overhead penalty
α
(u)
i the personalized QoE preference factors for viewer u

C. Adaptive Bitrate Switching Algorithm

The adaptive bitrate switching algorithm with data-driven
I-frame prediction cascades two neural networks (see Fig. 4):
one is an I-frame prediction network using a deep neural
network (DNN) [17], and the other is a bitrate selection
network using reinforcement learning (RL) [19].

I-frame prediction network. It predicts which video
streams will appear in the I-frames in the next sub-decision
period and assists the bitrate selection network to make an
optimal bitrate decision. It is the core to reduce the bitrate
mismatching ratio.

Input. The input of the I-frame prediction network M1
t

consists of two parts: one is client’s state information C1
t ,

the other is streaming media server’s state information S1
t .

M1
t = (C1

t |S1
t ) = (h1t ,m

1
t , e

1
t , q

1
t , d

1
t , ~g

1
t |k1t , o1t ) (10)
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Fig. 4. Architectural overview of the adaptive bitrate switching algorithm
with data-driven I-frame prediction.
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where h1t indicates the predicted network throughput; m1
t

signifies the mean of the last K network throughput records;
e1t indicates the predicted probability of the network through-
put increase at the next decision period; q1t is the current
video bitrate; d1t indicates the remaining proportion of the
current segment to be downloaded. ~g1t represents the sub-
decision period; k1t and o1t indicate the video cache duration
and the video rebuffering duration in the streaming media
server, respectively. To calculate e1t , we define four network
throughput change modes for the four consecutive network
throughput records: up up up, up down up, down up up,
down down up; we then calculate the probabilities of the four
modes appearing in the past N historical network throughput
records by a sliding window with window size of four; finally,
according to the last three network throughput records, we
predict the probability of the network throughput increase at
the next decision period.

Output. The output P = {pv} is a probability vector,
where v ∈ V represents the video bitrates; pv represents the
probability that an I-frame will appear in the video stream
with bitrate v in the next sub-decision period.

pv =

{ 1
Q v ∈ Q
0 v 6∈ Q, v ∈ V (11)

where Q represents the set of video bitrates that I-frames will
appear in the next sub-decision period.

Policy. As in previous studies [16], we use a mean square
error function as the loss function.

Bitrate selection network. Many RL algorithms have been
used to train learning agents, including A2C [20], PPO [21],
DQN [22], ACKTR [19], etc. In our work, we are particularly
interested in ACKTR, which uses a very efficient Kronecker-
factored approximate curvature (K-FAC) optimizer to estimate
the natural gradient, and hence each update becomes much
faster than others.

State. Similar to the I-frame prediction network, its state
information M2

t comes from client C2
t and streaming media

server S2
t .

M2
t = (C2

t |S2
t ) = (h1t ,m

1
t , e

1
t , b

2
t , f

2
t , q

1
t , l

2
t , r

2
t |n2t , k1t , o1t )

(12)
where b2t represents the client’s playback buffer occupancy; f2t
indicates whether the client’s playback buffer is empty; l2t is
the transmission latency between the client and the streaming
media server; r2t represents the client’s rebuffering duration; n2t
represents the remaining number of segments in the streaming
media server; and n2t is given by (l2t − b2t )∗frame rate.

Action. The action here is the optimal video bitrate adapted
to the current environment.

Reward. The goal of the bitrate selection network is to
achieve the maximum QoE, which is equivalent to minimizing
optimization objective (Ω). As shown in subsection II-B, we
have QoE = −Ω.

QoE = α(α
(u)
1 Θ(u)−α(u)

2 Γ (u)+α
(u)
3 Φ(u)−α(u)

4 Ψ (u))−βΛ(u)

(13)
where α and β are weighting parameters to tune the QoE
penalty and bandwidth overhead penalty, respectively, and

TABLE II
PERFORMANCE COMPARISON OF THE EXPONENTIAL FUNCTION WITH K .

K 1 2 3 4

Average QoE 5.18 6.37 5.72 3.54

TABLE III
THE NUMBER OF HIDDEN LAYERS IN THE I-FRAME PREDICTION

NETWORK.

Number of hidden layers 1 2 3 4 5

Average QoE 5.865 6.158 6.371 6.359 6.362

TABLE IV
THE NUMBER OF HIDDEN LAYERS IN THE BITRATE SELECTION NETWORK.

Number of hidden layers 1 2 3 4 5

Average QoE 6.033 6.217 6.371 6.370 6.365

α
(u)
1 , α(u)

2 , α(u)
3 and α

(u)
4 are personalized QoE preference

factors for viewer u.

III. PERFORMANCE EVALUATION

In this section, we delve in-depth into the implementation
details of each component of VHAS and describe the hyper-
parameter settings of the adaptive bitrate switching algorithm.
We then evaluate its performance with comparison to other
state-of-the-art solutions. To this end, we have implemented
a public live streaming platform, which simulates the data
interaction between clients and streaming media servers for the
last-mile transmission. It uses Mahimahi’s network emulation
tools [5] to emulate many different link conditions (different
round-trip times and network bandwidth) by taking the real
network traces as input.

A. Implementation

Variable-length segmentation. With the increase of K value,
the number of the I-frames inserted in the lowest bitrate video
stream will increase exponentially. Since the adaptive bitrate
switching algorithm needs to optimize the video smoothness
level to avoid frequent bitrate switching, many I-frames in-
serted are invalid and dramatically increase the bandwidth
overhead. By experimental comparison (see TABLE II), we
have found that when K is equal to 2, the user experience is
the best.

Time-slot. Based on trace analysis, we set the sub-decision
period as 0.5s in our experiments.

I-frame prediction network. The network structure of the I-
frame prediction network contains three fully connected layers
(see TABLE III). The number of the hidden cells in the first
fully-connected layer is 256, and in other fully-connected
layers is 128. Its output includes V (V is equal to the number
of actions) neurons. The I-frame prediction network applies a
mean square error function to update model parameters and its
learning rate is 0.001. Through experimental comparison, we
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found that K = 3, N = 100 can best characterize the dynamic
changes of the network bandwidth.

Bitrate selection network. The actor-network contains three
fully connected layers (see TABLE IV), and the number of the
hidden cells per layer is 128. The outputs from the last layer
are then aggregated in a hidden layer that uses V (V is equal to
the number of actions) neurons and applies a softmax function.
The critic network uses the same NN structure, but its final
output is a linear neuron (without activation function). During
training, we use a cumulative discount factor γ = 0.99, which
reflects that the current action will be affected by the future
time steps. The learning rate of the actor-network is 0.0001,
and the learning rate of the critic network is 0.001. Cooperative
enterprise builds an outstanding set of evaluation indicators
through years of user feedbacks, accurately reflecting the
users’ preferences in various live streaming scenarios [23].
Based on those indicators and existing QoE models, including
DeepQoE [24], DeepCast [18], MPC [14], Pensieve [5], and
Vabis [23], the six optimal hyperparameters of reward can
be configured as follows: α = 0.8, α1 = 1/frame rate,
α2 = 0.01, α3 = 0.2, α4 = 0.8, β = 0.2. Though fine-
tuning would be useful, we have found that the bitrate selection
network performs well for a wide range of hyperparameter
settings and can converge stably.

B. Datasets and Baselines

Datasets. The video dataset used in our experiment is a
competition set5, which contains video traces of three applica-
tion scenarios: game live streaming, indoor live streaming, and
sports live streaming. Each trace includes four bitrates streams
of {500, 850, 1200, 1850} Kbps, each with a length of 3358
seconds. We have implemented variable-length segmentation
by artificially inserting I-frames.

We used three real-world datasets for background network
traffic: an FCC broadband dataset6 provided by the US Federal
Communications Commission, a 3G/HSDPA mobile dataset
collected from Norway [25], and a 4G/LTE mobile dataset
collected from Belgium [6]. The FCC dataset contains over 1
million traces of throughput measurements, with each trace
logging the average throughput over 2100 seconds, at 5-
second granularity. We generated 1000 traces of 500 seconds
each for our corpus by concatenating selected traces from the
”Web browsing” category in February 2019 collection. The
3G/HSDPA dataset consists of 30 min traces of throughput
measurements with 1-second granularity. The 4G/LTE dataset
consists of 15 min traces with 1-second granularity. We ran-
domly selected 1000 throughput traces from the 3G/HSDPA
dataset and the 4G/LTE dataset for our corpus, each with
a duration of 500 seconds. To avoid trivial cases for which
choosing the maximum bitrate is always the optimal solution
or where the network cannot support any available bitrate, we
only considered original traces whose average throughput was
less than 3 Mbps and whose minimum throughput exceeded
0.2 Mbps. Unless otherwise noted, we used a random sample
of 80% our corpus as a training corpus and the remaining

5https://www.aitrans.online/.
6https://www.fcc.gov/reports-research/reports/.

20% as a test corpus. We used cross-validation to verify the
performance of VHAS.

Baseline ABR algorithms. To understand the effectiveness of
our algorithm, we considered four baseline ABR algorithms,
which collectively represent the state-of-the-art solutions.
• Buffer-Based (BB) [8], which uses a reservoir of 5

seconds and a cushion of 10 seconds. It attempts to select
bitrates by linear regulation such that buffer occupancy
always maintains above 5 seconds and select the highest
available bitrate if the buffer occupancy exceeds 15
seconds. In VHAS, we used a reservoir of 0.5 seconds
and a cushion of 3 seconds;

• Festive [10], which selects the highest available bitrate
that is below the predicted network throughput. This is
calculated by using the harmonic mean of the network
throughput values obtained during the past 5 decision
periods;

• Pensieve [5], which trains a neural network by optimiz-
ing the QoE metrics and implements bitrate selection
for future segments according to environmental state
information. In VHAS, we retrain it by using the same
configuration as that for Pensieve’

• Vabis [23], which uses an RL-based ABR algorithm to
select the bitrate for future frames by observable state
information.

Our experiments cover a broad set of realistic network
conditions and multiple video scenarios. We try to answer the
following questions through the experiments:

1) How does VHAS compare to the standard HAS and
the short segment HAS in terms of bitrate switching
timeliness and bandwidth overhead by using the existing
ABR algorithms? Fig. 5 and Fig. 6 suggest that VHAS
is obviously better than the short segment HAS, with a
decrease in the average bandwidth overhead of 37% -
57%. It also improves the timeliness of bitrate switching
over the standard HAS. Given that existing ABR algo-
rithms are hard to reduce the bitrate mismatch ratio, the
bitrate mismatch penalty is much worse in VHAS.

2) Can the adaptive bitrate switching algorithm reduce the
bitrate mismatch ratio and improve the overall QoE? Fig.
7 and Fig. 8 confirm that our algorithm can reduce the
bitrate mismatch ratio, and the overall QoE will always
be higher than that with the existing ABR algorithms.

3) Under different network conditions and video scenarios,
how does the performance of our algorithm compare to
that of existing ABR algorithms? As shown in Fig. 9
and Fig. 10, our algorithm performs significantly better
than the existing algorithms with a noticeable QoE
improvement of 15% - 49%.

C. VHAS with Existing ABR Algorithms

In this subsection, to verify that VHAS has a strong pre-
ponderance in terms of timely bitrate switching and efficient
bandwidth usage, we compared it with the standard HAS7

and the short segment HAS [7] on each QoE metric listed in

7https://github.com/Dash-Industry-Forum/dash.js/.
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Fig. 5. Compare VHAS, the short segment HAS, and the standard HAS by using the existing ABR algorithms in terms of the video quality, video latency,
bitrate smoothness level and bitrate mismatch level.
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Fig. 6. Compare VHAS, the short segment HAS, and the standard HAS by
using the existing ABR algorithms in terms of the average QoE and bandwidth
overhead.
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Fig. 7. Compare our algorithm and existing outstanding ABR algorithms in
VHAS in terms of the average QoE and bandwidth overhead.
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Fig. 8. Compare our algorithm and existing outstanding ABR algorithms in VHAS in terms of the video quality, video latency, bitrate smoothness level and
bitrate mismatch level.

Subsection II-B. The segment duration in the standard HAS
and the short segment HAS is 2s and 0.25s, respectively.
We used the existing state-of-the-art ABR algorithms listed
in Subsection III-B to make the bitrate decision and tested
in the game live streaming dataset. The Pensieve and Vabis
algorithms were trained in each experiment to optimize the
considered metrics using the entire training corpus. Experi-
mental results show six evaluation metrics obtained for the
test corpus.

Fig. 5 and Fig. 6 show that VHAS is superior to baselines
in many dimensions except for the bitrate mismatch level. Fig.
5(b) shows that the VHAS’s video latency is lower than others.
Fig. 5(c) demonstrates that VHAS can improve the timeliness
of bitrate switching over the standard HAS. VHAS uses the
trigger mechanism to transmit variable-length segments, which
can significantly increase the times of bitrate switching. Fig.
5(d) shows that the VHAS’s bitrate mismatch level is the
worst, which is because the existing state-of-the-art ABR

algorithms are hard to reduce the bitrate mismatch ratio with
variable-length segments. Fig. 6(a) shows that the average
QoE based on VHAS is the highest. Fig. 6(b) shows that
VHAS outperforms the short segment HAS, with a decrease
in the average bandwidth overhead of 37% -57%, which
is because VHAS can significantly reduce the ineffective
bandwidth overhead by inserting fewer I-frames in the higher
bitrate video streams.

D. VHAS with the Adaptive Bitrate Switching Algorithm

In this subsection, to verify that the adaptive bitrate switch-
ing algorithm can reduce the bitrate mismatch ratio and
improve the overall QoE, we compared it with the existing
outstanding ABR algorithms in terms of each QoE metric
listed in Subsection II-B. Those outstanding ABR algorithms
are listed in Subsection III-B. For comparison, we trained all
ABR algorithms in VHAS. In each experience, we continued
to iterate the Pensieve and Vabis algorithms until we obtained
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Fig. 9. Compare our algorithm and existing outstanding ABR algorithms in different video scenarios in terms of the average QoE. The results were collected
on the 3G/HSDPA and 4G/LTE hybrid network datasets.
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Fig. 10. Compare our algorithm and existing outstanding ABR algorithms in different video scenarios in terms of the average QoE. The results were collected
on the FCC broadband network datasets.

the optimal model under the QoE metrics considered. For the
BB and Festive algorithms, we adjusted the parameters of each
algorithm to obtain the optimal QoE. Experimental results for
the game live streaming dataset and the hybrid network dataset.

Fig. 7 and Fig. 8 show that VHAS outperforms other ABR
algorithms in all the dimensions considered. Fig. 7(a) shows
that the average QoE of our algorithm exceeds that of other
ABR algorithms. The reason is that the bitrate select network
predicts the network bandwidth more accurately and considers
the transmission latency more comprehensively. From Fig.
8(d), we determine that the bitrate mismatch level of our
algorithm is far superior to that of other excellent ABR
algorithms. The I-frame prediction network can significantly
reduce the probability of the invalid bitrate decisions (the
selected bitrate video stream does not have an I-frame in the
next sub-decision period) and improve the hit ratio of the
bitrate decisions.

E. Generalization

In this subsection, to verify that our algorithm has strong
generalizability, we compared it with the existing outstanding
ABR algorithms in the different video and network scenar-
ios in terms of the average QoE. Those outstanding ABR
algorithms are listed in Subsection III-B. In each experience,
we trained all ABR algorithms in VHAS, and we iterated
or adjusted their parameters to obtain the optimal QoE. We

compared three video scenarios with the highest viewing
frequencies, including room live streaming, game live stream-
ing, and sports live streaming. We compared two network
scenarios, namely the 3G/4G wireless network and broadband
network scenarios. The experimental results are provided in
the form of full CDFs for all combinations.

As shown in Fig. 9 and Fig. 10, our algorithm can maintain
higher performance for the different video and network sce-
narios considered. Especially for the 3G/4G wireless network
scenarios, it performs significantly better than those exist-
ing ABR algorithms with improvements in average QoE of
15% - 49%. Compared with the BB and Festive algorithms,
the adaptive bitrate switching algorithm uses reinforcement
learning to train a neural network and automatically adjust
its parameters according to its input to obtain the optimal
bitrate in complicated scenarios. Compared with the Pensieve
algorithm, our algorithm has more accurate I-frame prediction
and more comprehensive state information.

IV. RELATED WORK

The hyper text transfer protocol (HTTP) is generally
firewall-friendly, and HTTP server resources are also widely
available; hence, supporting HTTP-based adaptive streaming
(HAS) for a massive audience can be cost-effective using the
existing web infrastructure [26]. In HAS, a video stream is
divided into multiple segments, including initialization and
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media segments [2]–[4]. The initialization segments contain
the required information for initializing a media decoder.
The media segments contain media data and stream access
points, indicating where the decoder can play. Each segment
is encoded at several discrete bitrates, where a higher bitrate
represents a higher video quality and a larger segment size,
and the segment boundaries of different bitrates are aligned
[5]. Using a series of HTTP’s GET commands, a user can
progressively download a segment with a specific bitrate while
playing those already being downloaded. Any damaged or
delayed segment will have a limited impact, thus ensuring
continuous playback [27]. HAS is available on Apple’s Safari,
Google’s Chrome, and Microsoft’s Edge, and has been used by
such primary streaming services as YouTube and Netflix. As
compatible clients become available, it promises to be widely
adopted in a wide range of devices and platforms [28], [29].

Adaptive bitrate (ABR) algorithms determine how a client
selects different bitrates of segments to achieve the best QoE
in HAS, e.g., request a lower video bitrate when network
bandwidth is low or a higher video bitrate if enough net-
work bandwidth is available. Generally, existing ABR algo-
rithms can be organized into three broad categories, namely,
buffer-based ABR algorithms, rate-based ABR algorithms, and
quality-based ABR algorithms.

The most commonly used buffer-based ABR algorithms are
the BBA [8] and BOLA [9] algorithm. The video bitrate
requested by a player is determined only according to the
current playback buffer occupancy, which aims to maintain
the playback buffer occupancy within a suitable range that
balances the video rebuffering (the playback buffer is empty)
and video quality. For example, the BBA algorithm attempts
to select bitrates by linear regulation such that the playback
buffer occupancy always maintains above 5 seconds, especially
selecting the highest available bitrate if the playback buffer
occupancy exceeds 15 seconds. Since the playback buffer
occupancy is very susceptible to the network bandwidth and
the bitrate decision based on the current buffer has strong hys-
teresis, rate-based ABR algorithms are proposed. Rate-based
ABR algorithms such as FESTIVE [10], CS2P [11] and pandas
[12] have become popular in last years. By estimating available
network bandwidth at the next decision period according to the
historical records of network bandwidth, the highest available
video bitrate is selected, which is below the predicted network
bandwidth. Notable amongst the core of the rate-based ABR
algorithms is the prediction of the future network bandwidth.
For example, the Festive algorithm uses the harmonic mean of
the network bandwidth records obtained during the past five
decision periods to predict the network bandwidth of the next
period. The combination of buffer-based and rate-based ABR
algorithms is referred to as quality-based ABR algorithms,
which are found to give good results in network bandwidth
prediction and QoE optimization. These algorithms use the
historical records of the network bandwidth and the current
playback buffer occupancy to jointly decide the video bitrate,
including MPC [14], ABMA+ [15], and BOLA-E [30].

Those algorithms are conventionally based on pre-defined
rules with parameters observed from the server or client sides.
Such rules are deterministic and tailored to specific network

configurations. Recently, advanced learning tools [31]–[34], in
particular, reinforcement learning (RL), have also been used to
enhance the ABR algorithms. Those algorithms train a neural
network according to the state information from the server,
client, and transmission network, which can automatically
adjust their parameters according to their input to obtain
optimal video bitrates in complicated scenarios, including
pensieve [5], QARC [16], Vabis [23], HotDASH [35] and
Comyco [36]. Therefore, we also construct an RL-based ABR
algorithm in this paper.

V. CONCLUSION

In this paper, we proposed VHAS, an extension for intelli-
gent variable-length segmentation. Unlike the standard HAS,
we divided a video stream into variable-length segments and
implemented a data transmission process through a trigger
mechanism, which could accommodate timely and accurate
bitrate switching with the minimized bandwidth overhead.
Unlike existing ABR algorithms, the adaptive bitrate switching
algorithm with data-driven I-frame prediction could accurately
predict the probability of I-frames appearing in the next sub-
decision period, improving the hit ratio of bitrate switching
and minimizing the bitrate mismatch ratio. Over a broad set
of network conditions and video scenarios, we found that
VHAS outperformed existing algorithms with improvements
in average QoE of 15% - 49% and a decrease in the average
bandwidth overhead of 37% - 57%. In future work, we hope
that VHAS can be deployed in large-scale network topology.
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