
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

U2UData-2: A Scalable Swarm UAVs Autonomous Flight Dataset
for Long-horizon Tasks

Tongtong Feng
Department of Computer Science and
Technology, Tsinghua University

Beijing, China
fengtongtong@tsinghua.edu.cn

Xin Wang∗
Department of Computer Science and

Technology, BNRist, Tsinghua
University, Beijing, China
xin_wang@tsinghua.edu.cn

Feilin Han
Department of Film and Television
Technology, Beijing Film Academy

Beijing, China
hanfeilin@bfa.edu.cn

Leping Zhang
Department of Film and Television
Technology, Beijing Film Academy

Beijing, China
lepingzhang2002@gmail.com

Wenwu Zhu∗
Department of Computer Science and

Technology, BNRist, Tsinghua
University, Beijing, China
wwzhu@tsinghua.edu.cn

Scalable Simulator Scalable UAVs and Sensors

China Yunnan Map China 
Meteorological 

Center

Real-World Mapping Simulator

4 terrains, 9km2 flight area, 58 forest vegetation assets
15 superposition,  15 animals, 7 weather conditions

Scalable LH Tasks

Scalable UAV quantity, 
sensor type, quantity, position, angle, 

and resolution

Scalable Flight Algorithm and Formation Mode

Scalable animal quantity and activity 
range, weather intensity and range, 

UAV "starting point - weather - 
task"combination

Scalable swarm UAV autonomous flight algorithms, 
swarm formation mode

Autonomous
Formation Mode

Collaborative 
Perception

Collaborative 
Communication

Collaborative 
Localization

Collaborative 
Perception

Collaborative 
Communication

Collaborative
Task Re-allocation

Scalable new LH tasks based on the preset 
four LH tasks 

Visual
Control Window

U2UData-2

Figure 1: U2UData-2 collects a large-scale swarm UAV autonomous flight dataset for Long-Horizon (LH) tasks. U2UData-2
also provides a scalable data collection platform supporting the customization of simulators, UAVs, sensors, flight algorithms,
formation modes, and LH tasks. Through its visual control window, U2UData-2 allows users to collect customized datasets
through one-click deployment online and to verify algorithms by closed-loop simulation.
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Abstract
Swarm UAV autonomous flight for Long-Horizon (LH) tasks is
crucial for advancing the low-altitude economy. However, the max-
imum trajectory length in existing swarm UAV autonomous flight
datasets is limited to 15 seconds per flight path, which fails to ex-
plore LH tasks. This paper presents U2UData-2, the first large-scale
swarm UAV autonomous flight dataset for LH tasks and the first
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scalable data collection platform. The dataset is captured by 15
UAVs in autonomous collaborative flights for LH tasks, compris-
ing 12 scenes (weather and terrain combination), 720 traces, 120
hours (each trace 10 minutes), 4.32M LiDAR frames, and 12.96M
RGB frames. They also include brightness, temperature, humidity,
smoke, and airflow values covering all flight routes. The data col-
lection platform supports the customization of simulators, UAVs,
sensors, flight algorithms, formation modes, and LH tasks. Through
its visual control window, U2UData-2 allows users to collect cus-
tomized datasets through one-click deployment online and to verify
algorithms by closed-loop simulation. U2UData-2 can be found at
https://fengtt42.github.io/U2UData-2/.

CCS Concepts
•Computingmethodologies→Cognitive robotics;Cooperation
and coordination; Robotic planning.
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1 Introduction
SwarmUnmannedAerial Vehicle (UAV) autonomous flight for Long-
Horizon (LH) tasks is crucial for advancing the low-altitude econ-
omy, such as logistics distribution[1], patrol security[31], wildlife
conservation[7], disaster rescue[25], and infrastructure inspection[19].
LH tasks [2, 8] are complex, multi-step tasks that require sustained
planning, sequential decision-making, and extended execution over
a prolonged period to achieve a final goal.

Current low-altitude economy research mainly focuses on single-
UAV autonomous flight and has matured core capabilities[29, 32],
including object detection, semantic segmentation, localization, ob-
stacle avoidance, navigation, tracking, and stabilized flight control
in controlled environments. However, they still suffer from many
real-world challenges, for example: (1) Their perception remains
fundamentally constrained by single-viewpoint occlusion and lim-
ited sensor range[11, 17], severely reducing situational awareness in
dynamic open environments. (2) Onboard computational resources
restrict real-time decision-making for dynamic obstacle negotiation
and executing LH tasks[26, 28]. (3) Operational robustness is inher-
ently fragile[24, 33], as hardware failures or unexpected obstacles
often lead to task failure with no redundancy.

Swarm UAV autonomous flight[27] can solve the inherent limita-
tions of single-UAV through collaborative perception, localization,
communication, navigation, tracking, and task re-allocation. By
leveraging UAV-to-UAV (U2U) technologies, swarm UAVs over-
come single-viewpoint occlusion and sensor range limits through
multi-view collaborative perception[30]. Furthermore, swarm UAV
ensures operational robustness against failures or obstacles for ac-
curate navigation[14] and dynamic tracking[16] by collaborative

localization, communication, and task re-allocation, while mitigat-
ing computational constraints via shared processing and decentral-
ized decision-making. Finally, swarm UAV autonomous flight can
achieve robust, scalable, and adaptive task execution in complex
and harsh environments unattainable by single-UAV systems.

Swarm UAV research strongly relies on the development of
datasets. Existing swarmUAVdatasets, as shown in Table 1, CoPerception-
UAVs[10] and CoPerception-UAVs+[11] are based on open-source
simulators such as AirSim[23] and CARLA[5] and consider only 1
terrain, 1 weather, and 1 to 2 sensor types; they collect datasets using
fixed altitude and consistent or fixed formation mode. In real-world
scenarios, compared to autonomous driving, autonomous flight
has more freedom, faces more complex environments, and is more
susceptible to the influence of temperature, humidity, and airflow
due to its smaller size. Obviously, there will be a clear domain gap
between existing synthetic data and real-world data. U2UData[7] is
the first swarm UAVs autonomous flight dataset, which is collected
by three UAVs flying autonomously in the U2USim[9], covering a 9
km2 flight area, 4 terrains, 7 weather conditions, and 8 sensor types.
Due to the emergence of U2UData, swarm UAV autonomous flight
algorithms have begun to be studied.

However, the maximum trajectory length in existing swarm
UAV autonomous flight datasets is limited to 15 seconds per flight
path, which fails to explore LH tasks. U2UData only considers three
UAVs tracking three animals, the length of each trajectory is only
15 seconds, and the dataset size is fixed and cannot be expanded;
only focuses on basic collaborative perception and tracking tasks.
Complex LH tasks for swarm UAV autonomous flight in dynamic
open environments cannot be explored.

In this paper, we present U2UData-2, the first large-scale swarm
UAV autonomous flight dataset for LH tasks and the first scalable
data collection platform. On the one hand, the dataset is captured by
15 UAVs in autonomous collaborative flight for LH tasks, comprising
12 scenes (weather and terrain combination), 720 traces, 100+ hours
(each trace 10 minutes), 4.32M LiDAR frames, 12.96M RGB, and
12.96M depth frames. They also include brightness, temperature,
humidity, smoke, and airflow values covering all flight routes. On
the other hand, as shown in Figure 1, the data collection platform
supports the customization of simulators, UAVs, sensors, flight algo-
rithms, formation modes, and LH tasks. Through its visual control
window, U2UData-2 allows users to collect customized datasets
through one-click deployment online and to verify algorithms by
closed-loop simulation. Compared with U2UData, U2UData-2 in-
cludes more UAVs (3->15) andmore longer data collection trajectory
(15s->600s), which supports autonomous flight algorithms to more
comprehensively explore LH tasks; U2UData-2 includes a scalable
data collection platform, which can greatly alleviate the limitations
of existing datasets on algorithm development.

Our contributions can be summarized as follows:

• Dataset. We collect the first large-scale swarm UAV au-
tonomous flight dataset for LH tasks.

• Scalable data collection platform.We build the first scal-
able data collection platform for swarm UAV autonomous
flight, which allows users to collect customized datasets
through one-click deployment online and to verify algo-
rithms by closed-loop simulation.
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Table 1: A detailed comparison of swarm UAV datasets. - indicates that specific information is not provided. DF: Discipline
formation mode, where swarm UAVs keep a consistent and relatively static array; FF: Fixed formation mode, where each UAV
navigates independently with a fixed path; AF: Autonomous formation mode, where each UAV flies autonomously. ET-Length:
Each Trajectory Length. U2USim★ represents the scalable U2USim.

Dataset Year Terrains Weather Sensors Formation Sample Real Data Tasks Simulation UAVs ET-Lengh Scalable

CoPerception-UAVs[10] 2022 1 1 1 DF, FF 4s - Basic AirSim + Carla 5 - N
CoPerception-UAVs+[11] 2023 1 1 2 DF, FF 4s - Basic AirSim + Carla 10 - N

U2UData[7] 2024 4 7 8 DF, FF, AF 0.03s China Basic U2USim 3 15s N

U2UData-2 2025 4 7 8 DF, FF, AF 0.03s China LH U2USim★ 15 600s Y

2 Related Work
This section introduces the related work of swarm UAV simulators
and datasets in detail.

SwarmUAV simlators. Existing swarm UAV simulators include
FightGear[4], XPlan[21], Jmavsim[20], Gazebo[22], AirSim[23], Rfly-
Sim[6], Isaac Sim[18], and U2USim[9]. Swarm UAV simulators need
to more realistically simulate dynamic physical characteristics[18]
(such as collision); sensors such as IMU, camera, GPS, LiDAR, tem-
perature, humidity, and airflow due to their small size; and inter-
action with the ROS ecosystem. FightGear[4] is not open source.
XPlan[21] and Jmavsim[20] can only interact with ROS. Gazebo[22],
AirSim[23], and RflySim[6] can interact with ROS, simulate physi-
cal collision, and output visual sensor content. AirSim and RflySim
can also implement weather control. However the information on
these simulators is purely simulated, and the models trained on
these simulators are difficult to run in the real world. Isaac Sim[18]
and U2USim[9] add real environment data based on previous simu-
lators. Isaac Sim can visually realize digital twins of the real world
through GPU rendering, but it is difficult to provide modal infor-
mation other than visual and LiDAR modalities. U2USim is the first
real-world mapping swarm UAV simulator, taking Yunnan Province
as the prototype, including 4 terrains, 7 weather conditions, and 8
sensor types. However, all parameters of U2USim are fixed: it only
contains 3 types of animals, the number of animals is fixed, the
intensity and range of weather are fixed, and the take-off point of
the UAV is also fixed. If we want to test in another terrain, we need
to fly to the target location for a long time before each test.

Swarm UAV datasets. Existing swarm UAV Datasets include
CoPerception-UAVs[10], CoPerception-UAVs+[11], andU2UData[7].
Collecting datasets[3, 15] is crucial for advancing algorithms re-
search. Public swarm UAV datasets have significantly accelerated
progress in UAV flight technologies in recent years. Existing swarm
UAV datasets, such as CoPerception-UAVs[10] and CoPerception-
UAVs+[11], rely on open-source simulators like AirSim[23] and
CARLA[5], featuring limited terrain, weather, and sensor types.
These datasets collect data at fixed altitudes and in consistent or
fixed formation modes. In contrast to autonomous driving, UAVs’
autonomous flight presents greater freedom, encounters more com-
plex environments, and is more susceptible to the influence of tem-
perature, humidity, and airflow due to its smaller size. Hence, there
exists a notable domain gap between existing synthetic data and
real-world data, potentially limiting the generalization of models
trained. U2UData[7] is the first large-scale cooperative perception
dataset for swarm UAVs autonomous flight, which is collected by

three UAVs flying autonomously in the U2USim[9], covering a 9
km2 flight area, 4 terrains, 7 weather conditions, and 8 sensor types.
U2UData manually selects 100 scenarios for each weather condition;
U2UData collects 15 seconds of swarm UAV cooperative perception
dataset for each scenario. U2UData samples the image frames at
30Hz and the LiDAR frames at 10Hz, comprising a total of 945K
RGB frames, 945K depth frames, and 315K LiDAR frames. Due to
the emergence of U2UData, swarm UAV autonomous flight algo-
rithms have begun to be studied. However, since U2UData only
considers three UAVs tracking three animals, the length of each tra-
jectory is only 15 seconds, and the dataset size is fixed and cannot
be expanded; only basic collaborative perception and tracking tasks
can be designed. Complex LH tasks for swarm UAVs in dynamic
open environments cannot be explored.

3 U2UData-2
U2UData-2 includes a large-scale swarm UAV autonomous flight
dataset for LH tasks and a scalable data collection platform.

3.1 Scalable Data Collection Platform
The scalable data collection platform is based on U2USim[9], as
shown in Figure 1 and Figure 2, supporting the customization of
simulators, UAVs, sensors, flight algorithms, formation modes, and
LH tasks. Through its visual control window, U2UData-2 allows
users to collect customized datasets through one-click deployment
online and to verify algorithms by closed-loop simulation.

Real-world mapping simulator. The platform is based on
U2USim[9], a real-world mapping swarm UAV simulator.The plat-
form uses Unreal Engine (UE) 5.21 to construct a scaled-down
3km*3km simulated environment map based on the map of Yun-
nan Province. The platform includes 4 types of terrain: mountains,
hills, plains and basins. The elevation range is [56.6, 3000]m. Based
on the vegetation and animal distribution in Yunnan, 58 types of
original forest vegetation and 15 types of animal assets were con-
structed, and more than 15 superposition methods were used to
combine vegetation assets, including epiphytic growth, diagonal
staggered growth, and so on. Among them, the leaves of each plant
will dynamically change with wind, rain, snow, and other weather
conditions. The platform includes 7 weather conditions: sunny, rain,
snow, sandstorm, wind, thunder, and fog at specific positions within
the simulation environment. The platform uses the real meteorolog-
ical data of Yunnan Province collected by the China Meteorological
Center to map the simulation environment based on longitude and

1https://www.unrealengine.com/en-US/unreal-engine-5
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Figure 2: Scalable data collection platform. The platform is based on a real-world mapping simulator, which can continuously
collect new datasets through customized design of simulators, UAVs, sensors, flight algorithms, formation modes, and LH tasks.

latitude. Among them, temperature and humidity are scalars, and
missing values are filled by the moving average method (interval
5m). Wind speed and wind direction are first decomposed into
scalars along longitude and latitude, then missing values are filled
by sliding average, and finally constructed by vector synthesis.

Scalable simulator. The simulator delivers extensive config-
urability through UE5.2, enabling dynamic adjustments to animal
quantity and activity ranges, weather intensity and coverage, and
UAV "starting point-weather-task" combinations. In the simulator
startup interface, users can directly click the F11 key on the key-
board to make visual adjustments; input the animal quantity and
the activity radius value; fine-tune the weather parameters using in-
tuitive sliders, including intensity (e.g., rainfall severity, fog density)
and spatial range. Six predefined UAV starting points are mapped
to specific weather scenarios (rain, snow, sandstorm, thunder, fog,
and sunny). Since wind is located throughout the map, there is
no specific starting point setting. The starting point, weather, and
task are added as options to the visual control window, and users
can select from drop-down menus to implement custom "starting
point-weather-task" combinations.

Scalable UAVs and sensors. The platform includes 8 sensor
types: RGB, depth, LiDAR, brightness, temperature, humidity, smoke,
and airflow. These sensors are installed on the multirotor to explore
the simulator map and collect data at 0.03-second intervals, which
can be customized using a JSON settings file ("setting.json"). In this
JSON file, UAV quantity is customizable; the type, quantity, position,
angle, and resolution of sensors are also customizable; users can
edit the JSON file to customize their own multirotor by selecting
practical sensors and designing the sensor parameters.

Scalable LH tasks. The platform provides four preset LH tasks:
wildlife conservation employs adaptive animal tracking algorithms
using real-time behavior prediction across variable terrains and veg-
etation density. Logistics distribution dynamically reroutes paths
around simulated urban obstacles and weather disruptions while
maintaining payload integrity. Patrol security implements anomaly
detection through continuous environmental scanning, adapting
surveillance patterns to emergent threats in real-time. Disaster res-
cue prioritizes survivor identification in volatile conditions (collaps-
ing structures, spreading fires) via multi-sensor fusion and proba-
bilistic hazard mapping. Each task integrates specialized perception-
action loops that respond to unpredictable environmental changes
without predefined waypoints, such as sudden weather shifts or
moving obstacles. New LH tasks (e.g., precision agriculture) can be
added by modifying the UE5.2 simulator source code.

U2UData-2 Client                                                                                                                        　

Start Point Weather Task

Algorithm Formation KeyboardControl

Takeoff Land Up Down

Move Forward Move Backward Move Left Move Right

Log:
GPS Altitude:     121.98848724365234                      Rotation w: 0.0
GPS Latitude:    47.641467999997424                      Rotation y:  0.0
GPS Longitude: -122.140165                                     Rotation z:  0.0
Linear Speed:    0.0                                                    Angle Speed: 0.0

Figure 3: Visual control window. Users can collect customized
datasets through one-click deployment online and verify
algorithms by closed-loop simulation.

Scalable flight algorithm and formation mode. The plat-
form supports four swarm UAV autonomous flight algorithms for
four LH tasks: wildlife conservation, logistics distribution, patrol
security, and disaster rescue. Those algorithms are built upon mod-
ularized components, including task planning, collaborative percep-
tion, localization, communication, navigation, tracking, and task
re-allocation. Users can add or modify these algorithms via the
open-source code of the visual control window, where modular
code blocks allow drag-and-drop replacement or augmentation
of existing logic. New autonomous flight algorithms for custom
LH tasks can be integrated by directly modifying the provided
Python/ROS 2 interfaces in the code repository. The platform imple-
ments three distinct swarm formation modes: Discipline formation
mode maintains strict geometric coordination (e.g., linear/radial
arrays) for high-precision collaborative tasks, with real-time po-
sition correction compensating for environmental disturbances.
Fixed formation mode enables individual UAVs to follow predefined
paths, critical for infrastructure inspection or convoy protection
scenarios. Autonomous formation mode supports dynamic recon-
figuration where UAVs independently adapt spacing and topology
using real-time perception data, ideal for complex environments
like wildlife conservation or disaster rescue. Users can select any
swarm formation modes via the visual control window for task-
specific optimization.

Visual control window. The platform provides a visual control
window, as shown in Figure 3. Users can collect datasets through a
one-click deployment of the customizedUAV starting point, weather,

4
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Table 2: A detailed comparison of the data size between U2UData-2 with existing swarm UAV datasets.

Datasets RGB Depth LiDAR New Sensors
RGB Resolution Airflow Brightness Temperature Humidity Smoke

CoPerception-UAVs[10] 131.9K 800*450 - - - - - - -
CoPerception-UAVs+[11] 52.76K 800*450 - - - - - - -

U2UData[7] 945K 1920*1080 945K 315K 1.89M 945K 945K 945K 945K

U2UData-2 12.96M 1920*1080 12.96M 4.32M 25.92M 12.96M 12.96M 12.96M 12.96M

Table 3: Scene settings. ESTN: The trajectory number of each
scene.

Weather Scenes ESTN

Single-weather Sunny, Rain, Snow,
Sandstorm, Thunder, Fog 5

Cross-weather
Sunny->Rain, Sunny->Snow,

Sunny->Fog, Sunny->Sandstorm,
Rain->Thunder, Rain->Snow

3

LH tasks, swarm UAV autonomous flight algorithms, and swarm for-
mation mode. Users also can verify swarm UAV autonomous flight
algorithms by closed-loop simulation. For the platform basic capa-
bility test, users can first click the "keyboardControl" button, and
then control the UAV by clicking the following buttons: "Take off",
"Land", "Up", "Down", "Move Forward", "Move Backward", "Move
Left", and "Move Right".

3.2 Dataset
U2UData-2 provides a large-scale swarm UAV autonomous flight
dataset. The dataset is collected by 15 UAVs in autonomous forma-
tion mode for the LH task (wildlife conservation).

Sensor setting. The dataset bulids a comprehensive sensor suite
including 5 RGBD cameras (1920x1080 resolution, 90° FOV, 30Hz
sample rate), one 64-channel LiDAR (1 million points/second, 200m
capturing range, ±3cm accuracy, -30° to 30° vertical FOV, -180° to
180° horizontal FOV, 10Hz sample rate), two airflow sensors mea-
suring latitudinal and longitudinal wind speeds, and a GPS and IMU
system providing odometry data. Complementary environmental
sensors comprise one brightness sensor, one temperature sensor,
one humidity gauge, and one smoke sensor. Navigation is enabled
by integrated GPS and IMU systems providing odometry data. As
shown in Figure 1, all UAVs are equipped with 5 RGBD cameras
(front, back, left, right, and bottom), a 64-LiDAR sensor (top), 1
brightness, temperature, humidity, and smoke sensor (bottom), 2
airflow sensors (back and right), and GPS/IMU systems. This multi-
sensor configuration supports real-time environmental interaction
across dynamic scenarios from LiDAR-based terrain mapping in the
dense forest to airflow-adaptive flight control during storms. The
synchronized RGBD cameras enable high-fidelity object tracking
essential for wildlife monitoring.

Scene setting. The simulator map first is divided into 6 areas.
Except for wind, which is located throughout the map, other weath-
ers are deployed in specific areas and have no intersection. For

Table 4: Data collection settings between U2UData-2 with
existing swarm UAV datasets. ESTN: The trajectory number
of each scene. ET-Length: The length of each trajectory.

Datasets UAVs Scenes ESTN ET-Length

CoPerception-UAVs[13] 5 1 - -
CoPerception-UAVs+[11] 10 1 - -

U2UData[7] 3 7 100 15s

U2UData-2 15 12 3 or 5 600s

Table 5: A detailed comparison between U2UData and
U2UData-2. Basic tasks: collaborative perception and track-
ing. LH tasks: wildlife conservation, logistics distribution,
patrol security, disaster rescue based on collaborative percep-
tion, localization, communication, navigation, tracking, and
task re-allocation.★ represents the scalable. represents the
newly added function of U2UData-2.

Comparison U2UData U2UData-2

Tasks Basic tasks LH tasks ★
Each Trajectory Length 15s 600s ★
ALL Trajectory Length 8.75h 120h ★

UAV Number 3 15 ★
Tracking Goal 3 15 ★

Sensor 8 8 ★
Flight Start Pointing Fixed Selected ★
Flight Algorithm Fixed Selected ★

Visual Control Window No
Data online Collection No
Algorithm Closed-loop No

specific area locations, please watch the web page demonstration
video. Since each specific area has different terrain, weather and
terrain are strongly coupled. As shown in Table 3, we construct 12
scenes based on the most common weather combinations.

Dataset collection. As shown in Table 4, the dataset is collected
by 15 UAVs in autonomous formation mode for the LH task (wildlife
conservation), comprising 12 scenes, 3 or 5 trajectories of each scene,
600s length for each trajectory. As shown in Table 2, we collect a
total of 12.96M RGB frames, 12.96M depth frames, 4.32M LiDAR
frames, 25.92M airflow frames, 12.96M brightness frames, 12.96M
temperature frames, 12.96M humidity frames, and 12.96M smoke
frames. The total length of the entire dataset is 120 hours.
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Figure 4: The visualization of the U2UData-2 dataset. we select two swarm UAV collaboration clips and annotate them.

3D bounding boxes annotation. For annotating 3D bounding
boxes on the gathered LiDAR data, we utilize SusTechPoint[12],
a robust open-source labeling tool. There are a total of 15 object
classes, we annotate its 3D bounding box with 7 degrees of free-
dom, encompassing its location (x, y, z) and rotation (expressed
as quaternions: w, x, y, z). The location (x, y, z) corresponds to
the center of the bounding box. These 3D bounding boxes are an-
notated separately based on the global coordinate system of each
UAV. This approach enables the sensor data from each UAV to be
treated independently as a single-agent detection task. We initialize
the relative pose of the two UAVs for each frame using positional
information provided by the GPS on both UAVs.

Data usage.We randomly divide the dataset into training sets,
validation sets, and test sets according to the ratio of 0.7/0.15/0.15.
It can greatly facilitate the credibility of algorithm performance
compared to different papers.

3.3 U2UData-2 vs. U2UData
U2UData-2 significantly expands upon its predecessor (U2UData)
by transitioning from basic collaborative perception and tracking
tasks to scalable LH tasks based on multi-UAV collaborative percep-
tion, localization, communication, navigation, tracking, and task
re-allocation, such as wildlife conservation, logistics distribution,
patrol security, and disaster rescue. As shown in Table 5, key en-
hancements include 40× longer UAV trajectory of each scene (600s
vs 15s) and 13.7× greater total trajectory duration (120h vs 8.75h),
alongside 5× increases in UAV number (15 vs 3) and tracking targets
number (15 vs 3). While retaining eight sensors per UAV, U2UData-
2 introduces dynamic flight algorithm selection and customizable
starting points. Crucially, it adds three core innovations: a visual
control window for real-time monitoring, one-click online data col-
lection, and closed-loop algorithm validation. Those functionalities
are absent in the original U2UData. Most importantly, U2UData-2

establishes a scalable framework for swarm UAV autonomous flight
in dynamic open environments, which can greatly alleviate the
limitations of existing datasets on algorithm development.

3.4 Visualization
U2UData-2 dataset is the first large-scale swarm UAV autonomous
flight dataset for the LH task (wildlife conservation). As shown in
Figure 4, we select two swarm UAV collaboration clips and annotate
them. The first clip ((a)-(c)) demonstrates that the target localization
accuracy of a single UAV is limited due to obstacle obstruction and
restricted field of view; swarm UAVs eliminate target localization
errors through collaborative communication, perception, and lo-
calization. The second clip ((d)-(f)) illustrates that a single UAV
makes it difficult to complete complex tasks independently due to
its hardware limitations; swarm UAVs can improve the robustness
of completing LH tasks through collaborative perception, commu-
nication, and task re-allocation. These visualizations highlight the
dataset’s ability to design algorithms for LH tasks.

4 Conclusion
Swarm UAV autonomous flight for LH tasks is crucial for advancing
the low-altitude economy. In this paper, we present U2UData-2,
the first large-scale swarm UAV autonomous flight dataset for LH
tasks and the first scalable data collection platform. The dataset is
captured by 15 UAVs in autonomous collaborative flight for LH tasks,
comprising 12 scenes, 720 traces, and 100+ hours (each trace 10
minutes). The data collection platform supports the customization
of simulators, UAVs, sensors, flight algorithms, formation modes,
and LH tasks. Through a visual control window, U2UData-2 allows
users to collect datasets through one-click deployment online and
to verify algorithms by closed-loop simulation. We hope U2UData-2
can assist UAV algorithms in being deployed in the real world.
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