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Abstract

Swarm UAV autonomous flight for Embodied Long-Horizon
(ELH) tasks is crucial for advancing the low-altitude econ-
omy. However, existing methods focus only on specific ba-
sic tasks due to dataset limitations, failing in real-world de-
ployment for ELH tasks. ELH tasks are not mere concate-
nations of basic tasks, requiring handling long-term depen-
dencies, maintaining embodied persistent states, and adapt-
ing to dynamic goal shifts. This paper presents U2UData+,
the first large-scale swarm UAV autonomous flight dataset for
ELH tasks and the first scalable swarm UAV data online col-
lection and algorithm closed-loop verification platform. The
dataset is captured by 15 UAVs in autonomous collaborative
flights for ELH tasks, comprising 12 scenes, 720 traces, 120
hours, 600 seconds per trajectory, 4.32M LiDAR frames, and
12.96M RGB frames. This dataset also includes brightness,
temperature, humidity, smoke, and airflow values covering all
flight routes. The platform supports the customization of sim-
ulators, UAVs, sensors, flight algorithms, formation modes,
and ELH tasks. Through a visual control window, this plat-
form allows users to collect customized datasets through one-
click deployment online and to verify algorithms by closed-
loop simulation. U2UData+ also introduces an ELH task
for wildlife conservation and provides comprehensive bench-
marks with 9 SOTA models.

Dataset — https://fengtt42.github.io/U2UData-2/

Introduction
Swarm Unmanned Aerial Vehicle (UAV) autonomous flight
(Wang et al. 2020) can solve the inherent limitations of
single-UAV through collaborative perception, localization,
communication, navigation, tracking, and task re-allocation.
By leveraging UAV-to-UAV (U2U) technologies, swarm
UAVs overcome single-viewpoint occlusion and sensor
range limits through multi-view collaborative perception
(Xu et al. 2022b). Furthermore, swarm UAV ensures op-
erational robustness against failures or obstacles for accu-
rate navigation (Li et al. 2021) and dynamic tracking (Liu
et al. 2020) by collaborative localization, communication,
and task re-allocation, while mitigating computational con-
straints via shared processing and decentralized decision-
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making. Finally, swarm UAV autonomous flight can achieve
robust, scalable, and adaptive task execution in complex and
harsh environments unattainable by single-UAV systems.

Swarm UAV autonomous flight for Embodied Long-
Horizon (ELH) tasks is crucial for advancing the low-
altitude economy. ELH tasks (Feng et al. 2025b) are com-
plex, multi-step tasks that require sustained embodied plan-
ning, sequential decision-making, and extended execution
over a prolonged period to achieve a final goal. The prac-
tical applications of swarm UAV are almost all ELH tasks,
such as logistics distribution (Betti Sorbelli 2024), wildlife
conservation (Feng et al. 2024b), disaster rescue (Sun et al.
2024), and infrastructure inspection (Pan et al. 2024).

However, existing methods focus only on specific basic
tasks due to dataset limitations, failing in real-world deploy-
ment for ELH tasks. Existing swarm UAV flight datasets,
as shown in Table 1, CoPerception-UAVs (Hu et al. 2022)
and CoPerception-UAVs+ (Hu et al. 2023) are based on
open-source simulators such as AirSim (Shah et al. 2018)
and CARLA (Dosovitskiy et al. 2017) and consider only
1 terrain, 1 weather, and 1 to 2 sensor types; they collect
datasets using fixed altitude and consistent or fixed forma-
tion mode. In real-world scenarios, compared to autonomous
driving (Liu et al. 2024), autonomous flight has more free-
dom, faces more complex environments, and is more sus-
ceptible to the influence of temperature, humidity, and air-
flow due to its smaller size. Obviously, there will be a clear
domain gap between existing synthetic data and real-world
data. U2UData (Feng et al. 2024b) is the first swarm UAVs
autonomous flight dataset, which is collected by 3 UAVs fly-
ing autonomously in the U2USim (Han et al. 2024), cover-
ing 4 terrains, 7 weather conditions, and 8 sensor types. Due
to the emergence of U2UData, swarm UAV autonomous
flight algorithms have begun to be studied. But U2UData
is hard to use for exploring ELH tasks: 1) the length of
each trajectory in U2UData is only 15 seconds and only fo-
cuses on basic collaborative perception and tracking tasks;
2) the dataset size, tasks, and settings are preset and fixed
and cannot be expanded. ELH tasks are not mere concatena-
tions of basic tasks, requiring handling long-term dependen-
cies, maintaining persistent states, and adapting to dynamic
goal shifts. Therefore, building a scalable swarm UAV au-
tonomous flight dataset for ELH tasks is an urgent and chal-
lenging work for real-world deployment.
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Figure 1: U2UData+ collects a large-scale swarm UAV autonomous flight dataset for ELH tasks. U2UData+ also bulid a scalable
swarm UAV data online collection and algorithm closed-loop verification platform, supporting the customization of simulators,
UAVs, sensors, flight algorithms, formation modes, and ELH tasks. Through a visual control window, U2UData+ allows users
to collect customized datasets through one-click deployment online and to verify algorithms by closed-loop simulation.

In this paper, we present U2UData+, as shown in Fig-
ure 1, the first large-scale swarm UAV autonomous flight
dataset for ELH tasks and the first scalable swarm UAV
data online collection and algorithm closed-loop verifica-
tion platform. 1) The dataset is captured by 15 UAVs in au-
tonomous collaborative flight for ELH tasks (dataset size:
3.62T), comprising 12 scenes (weather and terrain combina-
tion), 720 traces, 120 hours (each trace 600 seconds), 4.32M
LiDAR frames, 12.96M RGB, and 12.96M depth frames.
This dataset also includes brightness, temperature, humidity,
smoke, and airflow values covering all flight routes. 2) The
platform supports the customization of simulators, UAVs,
sensors, flight algorithms, formation modes, and ELH tasks.
Through a visual control window, this platform allows users
to collect customized datasets through one-click deploy-
ment online and to verify algorithms by closed-loop simu-
lation, which can greatly alleviate the limitations of existing
datasets on algorithm development. 3) U2UData+ also in-
troduces an ELH task for wildlife conservation and provides
9 state-of-the-art swarm algorithms for benchmarking. All
datasets, platforms, benchmarks, and video tutorials have
been open-sourced and are available for public use. Our con-
tributions can be summarized as follows:
• Dataset. We collect the first swarm UAV autonomous

flight dataset for ELH tasks, with a size of over 3.62T.
• Platform. We build the first scalable swarm UAV data

online collection and algorithm closed-loop verifica-
tion platform, which allows users to collect customized
datasets and verify algorithms.

• Benchmark. We introduce an ELH task for wildlife con-
servation and provide comprehensive benchmarks with 9
SOTA models.

Related Work
This section introduces the related work of Swarm UAV au-
tonomous flight methods, simulators and datasets in detail.

Swarm UAV autonomous flight. Current low-altitude
economy research mainly focuses on single-UAV au-
tonomous flight and has matured core capabilities (Zhang
et al. 2022; Xu et al. 2022a; Feng et al. 2024a), including ob-
ject detection, semantic segmentation, localization, obstacle
avoidance, navigation, tracking, and stabilized flight control
in controlled environments. However, they still suffer from
many real-world challenges, for example: (1) Their percep-
tion remains fundamentally constrained by single-viewpoint
occlusion and limited sensor range (Hu et al. 2023; Lu et al.
2024), severely reducing situational awareness in dynamic
open environments. (2) Onboard computational resources
restrict real-time decision-making for dynamic obstacle ne-
gotiation and executing ELH tasks (Feng et al. 2025a; Li
et al. 2025; Shen et al. 2025). (3) Operational robustness is
inherently fragile (Sun et al. 2023; Zhao, Zhang, and Zou
2023), as hardware failures or unexpected obstacles often
lead to task failure with no redundancy. Swarm UAV au-
tonomous flight (Wang et al. 2020) can solve the inherent
limitations of single-UAV through collaborative perception,
localization, communication, navigation, tracking, and task
re-allocation. Due to the lack of datasets, research on au-



Table 1: A detailed comparison of swarm UAV datasets. - indicates that specific information is not provided. DF: Discipline
formation mode, where swarm UAVs keep a consistent and relatively static array; FF: Fixed formation mode, where each UAV
navigates independently with a fixed path; AF: Autonomous formation mode, where each UAV flies autonomously. ET-Length:
Each Trajectory Length. U2USim⋆ represents the scalable U2USim.

Dataset Year Terrains Weather Sensors Formation Real Data Tasks Simulation UAVs ET-Lengh Scalable

CoPerception-UAVs 2022 1 1 1 DF, FF - Basic AirSim + Carla 5 - N
CoPerception-UAVs+ 2023 1 1 2 DF, FF - Basic AirSim + Carla 10 - N

U2UData 2024 4 7 8 DF, FF, AF China Basic U2USim 3 15s N

U2UData+ 2025 4 7 8 DF, FF, AF China ELH U2USim⋆ 15 600s Y

tonomous flight algorithms for swarm UAV has just begun.
Swarm UAV simulators. Existing swarm UAV simula-

tors include FightGear (DigitalOcean 2024), XPlan (Re-
search 2025), Jmavsim (PX4 2025), Gazebo (Robotics
2025), AirSim (Shah et al. 2018), Rfly-Sim (FEISILAB
2025), Isaac Sim (NVIDIA 2025), and U2USim (Han et al.
2024). Swarm UAV simulators need to more realistically
simulate dynamic physical characteristics (such as colli-
sion); sensors such as IMU, camera, GPS, LiDAR, temper-
ature, humidity, and airflow due to their small size; and in-
teraction with the ROS ecosystem. FightGear is not open
source. XPlan and Jmavsim can only interact with ROS.
Gazebo, AirSim, and RflySim can interact with ROS, sim-
ulate physical collision, and output visual sensor content.
AirSim and RflySim can also implement weather control.
However the information on these simulators is purely sim-
ulated, and the models trained on these simulators are diffi-
cult to run in the real world. Isaac Sim and U2USim add real
environment data based on previous simulators. Isaac Sim
can visually realize digital twins of the real world through
GPU rendering, but it is difficult to provide modal informa-
tion other than visual and LiDAR modalities. U2USim is
the first real-world mapping swarm UAV simulator, taking
Yunnan Province as the prototype, including 4 terrains, 7
weather conditions, and 8 sensor types. However, all param-
eters of U2USim are fixed: it only contains 3 types of ani-
mals, the number of animals is fixed, the intensity and range
of weather are fixed, and the take-off point of the UAV is
also fixed. If we want to test in another terrain, we need to
fly to the target location for a long time before each test.

Swarm UAV datasets. Public swarm UAV datasets have
significantly accelerated progress in UAV flight technolo-
gies in recent years. As shown in Table 1, existing swarm
UAV datasets include CoPerception-UAVs (Hu et al. 2022),
CoPerception-UAVs+ (Hu et al. 2023), and U2UData (Feng
et al. 2024b). CoPerception-UAVs (Hu et al. 2022) and
CoPerception-UAVs+ (Hu et al. 2023) rely on open-source
simulators like AirSim (Shah et al. 2018) and CARLA
(Dosovitskiy et al. 2017), featuring limited terrain, weather,
and sensor types. These datasets collect data at fixed alti-
tudes and in consistent or fixed formation modes. In con-
trast to autonomous driving (Liu et al. 2024), UAVs’ au-
tonomous flight presents greater freedom, encounters more
complex environments, and is more susceptible to the influ-
ence of temperature, humidity, and airflow due to its smaller
size. Hence, there exists a notable domain gap between ex-
isting synthetic data and real-world data, potentially limiting

the generalization of models trained. U2UData (Feng et al.
2024b) is the first large-scale cooperative perception dataset
for swarm UAVs autonomous flight, which is collected by
three UAVs flying autonomously in the U2USim (Han et al.
2024), covering a 9 km2 flight area, 4 terrains, 7 weather
conditions, and 8 sensor types. U2UData manually selects
100 scenarios for each weather condition; U2UData collects
15 seconds of swarm UAV cooperative perception dataset
for each scenario. Due to the emergence of U2UData, swarm
UAV autonomous flight algorithms have begun to be studied.
However, since U2UData only considers three UAVs track-
ing three animals, the length of each trajectory is only 15
seconds, and the dataset size and setting is fixed and cannot
be expanded; only basic collaborative perception and track-
ing tasks can be designed. Complex ELH tasks (Liu et al.
2025; Wang et al. 2025) for swarm UAVs in dynamic open
environments cannot be explored.

U2UData+ Platform
U2UData+ bulids the first scalable swarm UAV data on-
line collection and algorithm closed-loop verification plat-
form, as shown in Figure 1, supporting the customiza-
tion of simulators, UAVs, sensors, flight algorithms, forma-
tion modes, and ELH tasks. Through a visual control win-
dow, U2UData+ allows users to collect customized datasets
through one-click deployment online and to verify algo-
rithms by closed-loop simulation. We have built a video tu-
torial for this platform. For each scalable operation, users
can complete it one by one according to the video tutorial.

Real-world mapping simulator. The platform is based
on U2USim (Han et al. 2024), a real-world mapping swarm
UAV simulator. The platform uses Unreal Engine (UE) 5.21

to construct a scaled-down 3km*3km simulated environ-
ment map based on the map of Yunnan Province. The plat-
form includes 4 types of terrain: mountains, hills, plains
and basins. The elevation range is [56.6, 3000]m. Based on
the vegetation and animal distribution in Yunnan, 58 types
of original forest vegetation and 15 types of animal assets
were constructed, and more than 15 superposition methods
were used to combine vegetation assets, including epiphytic
growth, diagonal staggered growth, and so on. Among them,
the leaves of each plant will dynamically change with wind,
snow, and other weather conditions. This platform can rep-
resent complex ecological relationships between animals. It
accurately models interactions such as predator-prey, show-

1https://www.unrealengine.com/en-US/unreal-engine-5
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Figure 2: The scalable UAVs data online collection and algorithm closed-loop verification platform. Wind throughout the map.

ing how these relationships influence collective movement
patterns. The platform includes 7 weather conditions: sunny,
rain, snow, sandstorm, wind, thunder, and fog at specific po-
sitions within the simulation environment. The platform uses
the real meteorological data of Yunnan Province collected
by the China Meteorological Center to map the simulation
environment based on longitude and latitude. Among them,
temperature and humidity are scalars, and missing values are
filled by the moving average method (interval 5m). Wind
speed and wind direction are first decomposed into scalars
along longitude and latitude, then missing values are filled
by sliding average, and finally constructed by vector synthe-
sis.

Scalable simulator. The simulator delivers extensive con-
figurability through UE5.2, enabling dynamic adjustments
to animal quantity and activity ranges, weather intensity
and coverage, and UAV ”starting point-weather-task” com-
binations. In the simulator startup interface, users can di-
rectly click the F11 key on the keyboard to make visual
adjustments; input the animal quantity and the activity ra-
dius value; fine-tune the weather parameters using intuitive
sliders, including intensity (e.g., rainfall severity, fog den-
sity) and spatial range. As shown in Figure 2, six predefined
UAV starting points are mapped to specific weather scenar-
ios (rain, snow, sandstorm, thunder, fog, and sunny). Since
wind is located throughout the map, there is no specific start-
ing point setting. The starting point, weather, and task are
added as options to the visual control window, and users can
select from drop-down menus to implement custom ”start-
ing point-weather-task” combinations.

Scalable UAVs and sensors. The platform includes 8 sen-
sor types: RGB, depth, LiDAR, brightness, temperature, hu-
midity, smoke, and airflow. These sensors are installed on
the multirotor to explore the simulator map and collect data
at 0.03-second intervals, which can be customized using a
JSON settings file (”setting.json”). In this JSON file, UAV
quantity is customizable; the type, quantity, position, an-
gle, and resolution of sensors are also customizable, such as
the Range and Number-Of-Channels of LiDAR sensors. The
JSON file contains a total of 132 customizable parameters.
Users can edit the JSON file to customize their own multi-
rotor by selecting practical sensors and designing the sensor
parameters. The specific meaning of each parameter and its
modification range have been annotated in the open-source
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Figure 3: Visual control window. Users can collect cus-
tomized datasets through one-click deployment online and
verify algorithms by closed-loop simulation.

platform code.
Scalable ELH tasks. The platform provides four pre-

set ELH tasks: wildlife conservation employs adaptive ani-
mal tracking algorithms using real-time behavior prediction
across variable terrains and vegetation density. Logistics dis-
tribution dynamically reroutes paths around simulated ur-
ban obstacles and weather disruptions while maintaining
payload integrity. Patrol security implements anomaly de-
tection through continuous environmental scanning, adapt-
ing surveillance patterns to emergent threats in real-time.
Disaster rescue prioritizes survivor identification in volatile
conditions (collapsing structures, spreading fires) via multi-
sensor fusion and probabilistic hazard mapping. Each task
integrates specialized perception-action loops that respond
to unpredictable environmental changes without predefined
waypoints, such as sudden weather shifts or moving ob-
stacles. New ELH tasks (e.g., precision agriculture) can be
added by modifying the UE5.2 simulator source code.

Scalable flight algorithms and formation modes. The
platform supports four swarm UAV autonomous flight algo-
rithms for four ELH tasks: wildlife conservation, logistics
distribution, patrol security, and disaster rescue. Those al-
gorithms are built upon modularized components, includ-
ing task planning, collaborative perception, localization,
communication, navigation, tracking, and task re-allocation.
Users can add or modify these algorithms via the open-
source code of the visual control window, where modular



Table 2: A detailed comparison of the data size between U2UData+ with existing swarm UAV datasets.

Datasets RGB Depth LiDAR New Sensors
RGB Resolution Airflow Brightness Temperature Humidity Smoke

CoPerception-UAVs 131.9K 800*450 - - - - - - -
CoPerception-UAVs+ 52.76K 800*450 - - - - - - -

U2UData 945K 1920*1080 945K 315K 1.89M 945K 945K 945K 945K

U2UData+ 12.96M 1920*1080 12.96M 4.32M 25.92M 12.96M 12.96M 12.96M 12.96M

code blocks allow drag-and-drop replacement or augmen-
tation of existing logic. New autonomous flight algorithms
for custom ELH tasks can be integrated by directly modify-
ing the provided Python/ROS 2 interfaces in the code repos-
itory. The platform implements three distinct swarm for-
mation modes: Discipline formation mode maintains strict
geometric coordination (e.g., linear/radial arrays) for high-
precision collaborative tasks, with real-time position cor-
rection compensating for environmental disturbances. Fixed
formation mode enables individual UAVs to follow prede-
fined paths, critical for infrastructure inspection or convoy
protection scenarios. Autonomous formation mode supports
dynamic reconfiguration where UAVs independently adapt
spacing and topology using real-time perception data, ideal
for complex environments like wildlife conservation or dis-
aster rescue. Users can select any swarm formation modes
via the visual control window for task-specific optimization.

Visual control window. The platform provides a visual
control window, as shown in Figure 3. Users can collect
datasets through a one-click deployment of the customized
UAV starting point, weather, ELH tasks, swarm UAV au-
tonomous flight algorithms, and swarm formation mode.
Users can also verify swarm UAV autonomous flight algo-
rithms by closed-loop simulation. For the platform basic ca-
pability test, users can first click the ”keyboardControl” but-
ton, and then control the UAV by clicking the following but-
tons: ”Take off”, ”Land”, ”Up”, ”Down”, ”Move Forward”,
”Move Backward”, ”Move Left”, and ”Move Right”. We’ve
also implemented XBOX controller control. Connect your
XBOX and open the simulator to directly control the UAV
with the controller. It’s important to note that XBOX con-
troller control and keyboard control are mutually exclusive.

U2UData+ Dataset
U2UData+ collects the first swarm UAV autonomous flight
dataset for ELH tasks, with a size of over 3.62T. The dataset
is collected by 15 UAVs in autonomous formation mode for
the ELH task (wildlife conservation).

ELH tasks. U2UData+ only collects one ELH task:
wildlife conservation, with a size of over 3.62T. Due to the
huge amount of data, users can collect datasets for other
ELH tasks on the U2UData+ platform on their own.

Sensor setting. The dataset bulids a comprehensive sen-
sor suite including 5 RGBD cameras (1920x1080 resolution,
90° FOV, 30Hz sample rate), one 64-channel LiDAR (1 mil-
lion points/second, 200m capturing range, ±3cm accuracy, -
30° to 30° vertical FOV, -180° to 180° horizontal FOV, 10Hz
sample rate), two airflow sensors measuring latitudinal and

Table 3: Swarm UAV flight scene settings. ESTN: The tra-
jectory number of each scene.

Weather Scenes ESTN

Single-weather Sunny, Rain, Snow,
Sandstorm, Thunder, Fog 5

Cross-weather
Sunny->Rain, Sunny->Snow,

Sunny->Fog, Sunny->Sandstorm,
Rain->Thunder, Rain->Snow

3

Table 4: Data collection settings between U2UData+ with
existing swarm UAV datasets. ET-Length: The length of
each trajectory. TNT: The total length of trajectories.

Datasets UAVs Scenes ET-Length TLT

CoPerception-UAVs 5 1 - -
CoPerception-UAVs+ 10 1 - -

U2UData 3 7 15s 8.75h

U2UData+ 15 12 600s 120h

longitudinal wind speeds, and a GPS and IMU system pro-
viding odometry data. Complementary environmental sen-
sors comprise one brightness sensor, one temperature sen-
sor, one humidity sensor, and one smoke sensor. Navigation
is enabled by integrated GPS and IMU systems providing
odometry data. As shown in Figure 1, all UAVs are equipped
with 5 RGBD cameras (front, back, left, right, and bottom),
a 64-LiDAR sensor (top), 1 brightness, temperature, humid-
ity, and smoke sensor (bottom), 2 airflow sensors (back and
right), and GPS/IMU systems. This multisensor configura-
tion supports real-time environmental interaction across dy-
namic scenarios from LiDAR-based terrain mapping in the
dense forest to airflow-adaptive flight control during storms.
The synchronized RGBD cameras enable high-fidelity ob-
ject tracking essential for wildlife monitoring.

Scene setting. The simulator map is first divided into 6 ar-
eas. Except for wind, which is located throughout the map,
other weather is deployed in specific areas and has no in-
tersection. For specific area locations, please watch the web
page demonstration video. Since each specific area has dif-
ferent terrain, weather and terrain are strongly coupled. As
shown in Table 3, we construct 12 scenes based on the most
common weather combinations. For single-weather scenes,
the trajectory of each scene collected by U2UData+ is 5. For
cross-weather scenes, the trajectory of each scene collected
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Figure 4: The visualization of the U2UData+ dataset. we select two swarm UAV collaboration clips and annotate them.

by U2UData+ is 3.
Dataset collection. As shown in Table 4, the dataset is

collected by 15 UAVs in autonomous formation mode for the
ELH task (wildlife conservation), comprising 12 scenes, 720
trajectories, and 600 seconds in length for each trajectory.
The sampling interval of each sensor is 0.03 seconds and is
synchronized in real time. As shown in Table 2, we collect a
total of 12.96M RGB frames, 12.96M depth frames, 4.32M
LiDAR frames, 25.92M airflow frames, 12.96M bright-
ness frames, 12.96M temperature frames, 12.96M humidity
frames, and 12.96M smoke frames. The total length of the
entire dataset is 120 hours. The total size of U2UData+ is
3.62T. The dataset has been open-sourced and are available
for public use.

3D bounding boxes annotation. For annotating 3D
bounding boxes on the gathered LiDAR data, we utilize
SusTechPoint (Li et al. 2020), a robust open-source label-
ing tool. There are a total of 15 object classes, and we an-
notate their 3D bounding box with 7 degrees of freedom,
encompassing its location (x, y, z) and rotation (expressed
as quaternions: w, x, y, z). The location (x, y, z) corresponds
to the center of the bounding box. These 3D bounding boxes
are annotated separately based on the global coordinate sys-
tem of each UAV. This approach enables the sensor data
from each UAV to be treated independently as a single-
agent detection task. We initialize the relative pose of the
two UAVs for each frame using positional information pro-
vided by the IMU on both UAVs.

Data usage. We randomly divide the dataset into training
sets, validation sets, and test sets according to the ratio of
0.7/0.15/0.15. It can greatly facilitate the credibility of the
algorithm’s performance compared to different papers.

U2UData+ vs. U2UData. U2UData+ significantly ex-
pands upon its predecessor (U2UData) by transitioning from
basic collaborative perception and tracking tasks to scal-

Table 5: A detailed comparison between U2UData and
U2UData+. Basic tasks: collaborative perception and track-
ing. ELH tasks: wildlife conservation based on collaborative
perception, localization, communication, navigation, track-
ing, and task re-allocation. ⋆ represents the scalable. rep-
resents the newly added function of U2UData+.

Comparison U2UData U2UData+

Tasks Basic tasks ELH tasks ⋆
Each Trajectory Length 15s 600s ⋆
ALL Trajectory Length 8.75h 120h ⋆

UAV Number 3 15 ⋆
Tracking Goal 3 15 ⋆

Sensor 8 8 ⋆
Flight Start Pointing Fixed Selected ⋆

Flight Algorithm Fixed Selected ⋆
Visual Control Window No
Data online Collection No
Algorithm Closed-loop No

able ELH tasks (wildlife conservation) based on multi-UAV
collaborative perception, localization, communication, nav-
igation, tracking, and task re-allocation. As shown in Table
5, key enhancements include 40× longer UAV trajectory of
each scene (600s vs 15s) and 13.7× greater total trajectory
duration (120h vs 8.75h), alongside 5× increases in UAV
number (15 vs 3) and tracking targets number (15 vs 3).
While retaining eight sensors per UAV, U2UData+ intro-
duces dynamic flight algorithm selection and customizable
starting points. Crucially, it adds three core innovations: a
visual control window for real-time monitoring, one-click
online data collection, and closed-loop algorithm validation.
Those functionalities are absent in the original U2UData.



Table 6: Swarm UAV collaborative tracking benchmark for ELH tasks in the U2UData+ dataset.

Methods AMOTA(↑) AMOTP(↑) sAMOTA(↑) MOTA(↑) MT(↑) ML(↓)

No Fusion 9.36 25.48 32.19 23.47 18.67 65.52
Late Fusion 14.62 31.68 47.96 37.41 27.93 37.28
Early Fusion 18.61 32.45 43.80 41.64 25.51 34.48
When2Com 20.16 34.32 49.47 45.74 30.69 32.51

DiscoNet 20.94 37.56 52.63 46.79 32.50 29.47
V2VNet 23.47 43.23 57.82 49.93 35.68 26.79
V2X-ViT 22.86 40.76 55.74 48.70 33.26 27.94
CoBEVT 24.63 45.76 54.73 51.18 34.79 27.25

Where2com 24.16 42.63 55.69 50.82 33.76 26.42

Most importantly, U2UData+ establishes a scalable frame-
work for swarm UAV autonomous flight in dynamic open
environments, which can greatly alleviate the limitations of
existing datasets on algorithm development.

Dataset Visualization. U2UData+ dataset is the first
large-scale swarm UAV autonomous flight dataset for the
ELH task (wildlife conservation). As shown in Figure 4,
we select two swarm UAV collaboration clips and anno-
tate them. The first clip ((a)-(c)) demonstrates that the tar-
get localization accuracy of a single UAV is limited due
to obstacle obstruction and restricted field of view; swarm
UAVs eliminate target localization errors through collabora-
tive communication, perception, and localization. The sec-
ond clip ((d)-(f)) illustrates that a single UAV makes it dif-
ficult to complete complex tasks independently due to its
hardware limitations; swarm UAVs can improve the robust-
ness of completing ELH tasks through collaborative percep-
tion, communication, and task re-allocation. These visual-
izations highlight the dataset’s ability to design algorithms
for ELH tasks.

U2UData+ Benchmark
SOTA Algorithms. Since the algorithms of swarm UAV
autonomous flight for ELH tasks are still lacking, we pro-
vide a swarm UAV collaborative tracking benchmark for
ELH tasks in the U2UData+ dataset. This benchmark uses
9 SOAT collaborative tracking algorithms, including No Fu-
sion, Late Fusion, Early Fusion, When2Com (Liu et al.
2020), DiscoNet (Li et al. 2021), V2VNet (Wang et al.
2020), V2X-ViT (Xu et al. 2022b), CoBEVT (Xu et al.
2022a), and Where2com (Hu et al. 2022). This benchmark
will be updated dynamically afterwards.

Evaluation metrics. We utilize the same evaluation met-
rics as outlined in (Weng et al. 2020) for object tracking.
These metrics include: AMOTA, average multiobject track-
ing accuracy; AMOTP, average multiobject tracking preci-
sion; sAMOTA, scaled average multiobject tracking accu-
racy, which ensures a more linear representation across the
entire [0, 1] range of significantly challenging tracking tasks;
MOTA, multi object tracking accuracy; MT, mostly tracked
trajectories; ML, mostly lost trajectories.

Tracker. We’ve chosen the AB3Dmot tracker (Weng et al.
2020) as our basic module of all SOAT algorithms. This
tracker initially retrieves 3D object detections from a LiDAR

point cloud. It subsequently integrates the 3D Kalman filter
with the birth and death memory technique to guarantee ef-
ficient and resilient tracking performance. It attains state-of-
the-art performance while maintaining the fastest speed.

Implementation details. We designate No Fusion as our
baseline. To ensure a fair comparison, all models utilize
PointPillar as the backbone for LiDAR feature extraction
and use 32x feature compression (decompression) to save
bandwidth. Among them, for CoBEVT, we only use the
FuseBEVT module for feature aggregation without the Sim-
BEVT module. During the training phase, we randomly des-
ignate one UAV as the ego UAV and train each model un-
til achieving optimal task performance. During testing, we
evaluate all compared models using a fixed ego UAV. For
the tracking task, we utilize the previous three frames along
with the current frame as inputs.

Results. As shown in Table 6, compared to the No Fusion
method, AB3Dmot combined with cooperative algorithms
significantly improves the tracking performance by at least
35.97% AMOTA and 32.88% sAMOTA. Compared with
the Late Fusion method, the Intermediate Fusion method
can improve the tracking performance by up to 27.48%
AMOTA. Compared with the Early Fusion method, the In-
termediate Fusion method can improve the tracking perfor-
mance up to 8.33% AMOTA.

Conclusion

Swarm UAV autonomous flight for ELH tasks is crucial.
U2UData+ is the first large-scale swarm UAV autonomous
flight dataset for ELH tasks and the first scalable swarm
UAV data online collection and algorithm closed-loop ver-
ification platform. The dataset is captured by 15 UAVs in
autonomous collaborative flight for ELH tasks, comprising
12 scenes, 720 traces, 120 hours, and 600 seconds per tra-
jectory. The platform supports the customization of simula-
tors, UAVs, sensors, flight algorithms, formation modes, and
ELH tasks. Through a visual control window, this platform
allows users to collect customized datasets through one-
click deployment online and to verify algorithms by closed-
loop simulation. U2UData+ also provides a benchmark with
9 SOTA models. In the future, we hope U2UData+ can assist
swarm UAV algorithms in being deployed in the real world.
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